import pandas as pd from datasets import load_dataset import streamlit as st from clarin_datasets.dataset_to_show import DatasetToShow class AspectEmoDataset(DatasetToShow): def __init__(self): self.dataset_name = "clarin-pl/aspectemo" self.subsets = ["train", "test"] self.description = """ Description AspectEmo Corpus is an extended version of a publicly available PolEmo 2.0 corpus of Polish customer reviews used in many projects on the use of different methods in sentiment analysis. The AspectEmo corpus consists of four subcorpora, each containing online customer reviews from the following domains: school, medicine, hotels, and products. All documents are annotated at the aspect level with six sentiment categories: strong negative (minus_m), weak negative (minus_s), neutral (zero), weak positive (plus_s), strong positive (plus_m). Tasks (input, output and metrics) Aspect-based sentiment analysis (ABSA) is a text analysis method that categorizes data by aspects and identifies the sentiment assigned to each aspect. It is the sequence tagging task. Input ('tokens' column): sequence of tokens Output ('labels' column): sequence of predicted tokens’ classes ("O" + 6 possible classes: strong negative ( a_minus_m), weak negative (a_minus_s), neutral (a_zero), weak positive (a_plus_s), strong positive ( a_plus_m), ambiguous (a_amb) ) Domain: school, medicine, hotels and products Measurements: Example: ['Dużo', 'wymaga', ',', 'ale', 'bardzo', 'uczciwy', 'i', 'przyjazny', 'studentom', '.', 'Warto', 'chodzić', 'na', 'konsultacje', '.', 'Docenia', 'postępy', 'i', 'zaangażowanie', '.', 'Polecam', '.'] → ['O', 'a_plus_s', 'O', 'O', 'O', 'a_plus_m', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'a_zero', 'O', 'a_plus_m', 'O', 'O', 'O', 'O', 'O', 'O'] """ def load_data(self): raw_dataset = load_dataset(self.dataset_name) self.data_dict = { subset: raw_dataset[subset].to_pandas() for subset in self.subsets } def show_dataset(self): header = st.container() description = st.container() dataframe_head = st.container() with header: st.title(self.dataset_name) with description: st.header("Dataset description") st.write(self.description) full_dataframe = pd.concat(self.data_dict.values(), axis="rows") with dataframe_head: df_to_show = full_dataframe.head(10) st.header("First 10 observations of the dataset") st.dataframe(df_to_show) st.text_area(label="Latex code", value=df_to_show.style.to_latex())