Spaces:
Paused
Paused
File size: 5,984 Bytes
0227006 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 |
from collections import defaultdict
from dataclasses import dataclass
from typing import Dict, List
import numpy as np
import pandas as pd
from datasets import load_dataset
from content import PLOT_1_TITLE, PLOT_2_TITLE, PLOT_3_TITLE, PLOT_4_TITLE
from utils import make_clickable_model
from visualizations import (get_bootstrap_result, switch_model_a_b,
visualize_battle_count, visualize_bootstrap_scores,
visualize_pairwise_win_fraction,
visualize_rating_count)
@dataclass
class EloEvalResult:
model: str
gpt_4_all: int
human_all: int
human_instruct: int
human_code_instruct: int
tie_allowed: bool
def to_dict(self):
base_model = f"{self.model}"
data_dict = {}
data_dict["Model"] = make_clickable_model(base_model)
data_dict["GPT-4 (all)"] = self.gpt_4_all
data_dict["Human (all)"] = self.human_all
data_dict["Human (instruct)"] = self.human_instruct
data_dict["Human (code-instruct)"] = self.human_code_instruct
return data_dict
def create_eval_df(df, tie_allowed):
responses = []
for _, row in df.iterrows():
if row["status"] == "canceled":
continue
rating = row["response"]["annotations"]["Preference"]
if rating == "NaN":
continue
scores = row["response"]["responses"]
if any(s["Preference"] == "" for s in scores):
continue
response = {
"id": row["task_id"],
"prompt": row["params"]["templateVariables"]["prompt"],
"model_a": row["params"]["templateVariables"]["modela"],
"model_b": row["params"]["templateVariables"]["modelb"],
"response_a": row["params"]["templateVariables"]["response1"],
"response_b": row["params"]["templateVariables"]["response2"],
"rating": int(rating),
"ratings": [np.array([s["Preference"] for s in scores], dtype=np.int32)],
}
if tie_allowed:
response["win"] = "model_a" if response["rating"] < 4 else "model_b" if response["rating"] > 5 else "tie"
else:
response["win"] = "model_a" if response["rating"] < 5 else "model_b"
responses.append(response)
return pd.DataFrame(responses)
def create_eval_df_for_gpt(df, tie_allowed):
responses = []
for _, row in df.iterrows():
response = {
"id": row["review_id"],
"prompt": row["question"],
"model_a": row["model1"],
"model_b": row["model2"],
"response_a": row["answer1"],
"response_b": row["answer2"],
"rating": row["score"][0],
}
if tie_allowed:
response["win"] = "model_a" if response["rating"] < 4 else "model_b" if response["rating"] > 5 else "tie"
else:
response["win"] = "model_a" if response["rating"] < 5 else "model_b"
responses.append(response)
return pd.DataFrame(responses)
# Compute the Elo rating for each model
def compute_elo(df, k=32, scale=400, base=10, initial_rating=1000):
rating = defaultdict(lambda: initial_rating)
for _, model_a, model_b, win in df[["model_a", "model_b", "win"]].itertuples():
ra = rating[model_a]
rb = rating[model_b]
ea = 1 / (1 + base ** ((rb - ra) / scale))
eb = 1 / (1 + base ** ((ra - rb) / scale))
if win == "model_a":
sa = 1
elif win == "model_b":
sa = 0
elif win == "tie" or win == "tie (bothbad)":
sa = 0.5
else:
raise Exception(f"unexpected vote {win}")
rating[model_a] += k * (sa - ea)
rating[model_b] += k * (1 - sa - eb)
return rating
def convert_rating_from_float_to_int(df):
return {model: int(rating) for model, rating in compute_elo(df).items()}
def get_elo_results(df_instruct, df_code_instruct, tie_allowed):
df_all = pd.concat([df_instruct, df_code_instruct])
df_gpt_4 = load_dataset(
"gpt_4_evals/data/", split="train", revision="e007baaf6e505731c08a0bc1a833a1f8f8cb8846"
).to_pandas()
dfs = [df_instruct, df_code_instruct, df_all]
elo_ratings = [convert_rating_from_float_to_int(create_eval_df(df, tie_allowed=tie_allowed)) for df in dfs]
gpt_4_elo_ratings = convert_rating_from_float_to_int(create_eval_df_for_gpt(df_gpt_4, tie_allowed=tie_allowed))
elo_ratings.append(gpt_4_elo_ratings)
results = [
EloEvalResult(
model=model_name,
gpt_4_all=elo_ratings[3][model_name],
human_all=elo_ratings[2][model_name],
human_instruct=elo_ratings[0][model_name],
human_code_instruct=elo_ratings[1][model_name],
tie_allowed=tie_allowed,
)
for model_name in elo_ratings[0].keys()
]
return results
def get_elo_results_dicts(df_instruct, df_code_instruct, tie_allowed) -> List[Dict]:
eval_results = get_elo_results(df_instruct, df_code_instruct, tie_allowed)
return [r.to_dict() for r in eval_results]
def get_elo_plots(df_instruct, df_code_instruct, tie_allowed):
df_instruct = create_eval_df(df_instruct, tie_allowed=tie_allowed)
df_code_instruct = create_eval_df(df_code_instruct, tie_allowed=tie_allowed)
df_all = pd.concat([df_instruct, df_code_instruct])
game = df_all[["model_a", "model_b", "win"]]
game_switch = switch_model_a_b(game)
plot_1 = visualize_pairwise_win_fraction(game_switch, PLOT_1_TITLE)
plot_2 = visualize_battle_count(game_switch, PLOT_2_TITLE)
BOOTSTRAP_ROUNDS = 1000
if "bootstrap_elo_lu" not in globals():
bootstrap_elo_lu = get_bootstrap_result(game_switch, compute_elo, BOOTSTRAP_ROUNDS)
plot_3 = visualize_bootstrap_scores(bootstrap_elo_lu, PLOT_3_TITLE)
plot_4 = visualize_rating_count(game, PLOT_4_TITLE)
return plot_1, plot_2, plot_3, plot_4
|