Spaces:
Paused
Paused
File size: 5,273 Bytes
6254b87 460d762 8c49cb6 6254b87 460d762 8c49cb6 460d762 8c49cb6 d52179b 460d762 8c49cb6 460d762 8c49cb6 460d762 8c49cb6 b323764 460d762 d16cee2 217b585 ecef2dc b323764 8c49cb6 460d762 8c49cb6 d16cee2 8c49cb6 460d762 8c49cb6 460d762 8c49cb6 460d762 6eaad72 12cea14 460d762 8c49cb6 460d762 699e8ff 8c49cb6 6254b87 699e8ff 8c49cb6 699e8ff 6254b87 8c49cb6 460d762 8c49cb6 460d762 8c49cb6 460d762 8c49cb6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 |
import os
from dataclasses import dataclass
from huggingface_hub import HfApi
API = HfApi()
# These classes are for user facing column names, to avoid having to change them
# all around the code when a modif is needed
@dataclass
class ColumnContent:
name: str
type: str
displayed_by_default: bool
hidden: bool = False
def fields(raw_class):
return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"]
@dataclass(frozen=True)
class AutoEvalColumn: # Auto evals column
model_type_symbol = ColumnContent("T", "str", True)
model = ColumnContent("Model", "markdown", True)
average = ColumnContent("Average ⬆️", "number", True)
arc = ColumnContent("ARC", "number", True)
hellaswag = ColumnContent("HellaSwag", "number", True)
mmlu = ColumnContent("MMLU", "number", True)
truthfulqa = ColumnContent("TruthfulQA", "number", True)
model_type = ColumnContent("Type", "str", False)
precision = ColumnContent("Precision", "str", False) # , True)
license = ColumnContent("Hub License", "str", False)
params = ColumnContent("#Params (B)", "number", False)
likes = ColumnContent("Hub ❤️", "number", False)
still_on_hub = ColumnContent("Available on the hub", "bool", False)
revision = ColumnContent("Model sha", "str", False, False)
dummy = ColumnContent(
"model_name_for_query", "str", True
) # dummy col to implement search bar (hidden by custom CSS)
@dataclass(frozen=True)
class EloEvalColumn: # Elo evals column
model = ColumnContent("Model", "markdown", True)
gpt4 = ColumnContent("GPT-4 (all)", "number", True)
human_all = ColumnContent("Human (all)", "number", True)
human_instruct = ColumnContent("Human (instruct)", "number", True)
human_code_instruct = ColumnContent("Human (code-instruct)", "number", True)
@dataclass(frozen=True)
class EvalQueueColumn: # Queue column
model = ColumnContent("model", "markdown", True)
revision = ColumnContent("revision", "str", True)
private = ColumnContent("private", "bool", True)
precision = ColumnContent("precision", "str", True)
weight_type = ColumnContent("weight_type", "str", "Original")
status = ColumnContent("status", "str", True)
LLAMAS = [
"huggingface/llama-7b",
"huggingface/llama-13b",
"huggingface/llama-30b",
"huggingface/llama-65b",
]
KOALA_LINK = "https://huggingface.co/TheBloke/koala-13B-HF"
VICUNA_LINK = "https://huggingface.co/lmsys/vicuna-13b-delta-v1.1"
OASST_LINK = "https://huggingface.co/OpenAssistant/oasst-sft-4-pythia-12b-epoch-3.5"
DOLLY_LINK = "https://huggingface.co/databricks/dolly-v2-12b"
MODEL_PAGE = "https://huggingface.co/models"
LLAMA_LINK = "https://ai.facebook.com/blog/large-language-model-llama-meta-ai/"
VICUNA_LINK = "https://huggingface.co/CarperAI/stable-vicuna-13b-delta"
ALPACA_LINK = "https://crfm.stanford.edu/2023/03/13/alpaca.html"
def model_hyperlink(link, model_name):
return f'<a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{model_name}</a>'
def make_clickable_model(model_name):
link = f"https://huggingface.co/{model_name}"
if model_name in LLAMAS:
link = LLAMA_LINK
model_name = model_name.split("/")[1]
elif model_name == "HuggingFaceH4/stable-vicuna-13b-2904":
link = VICUNA_LINK
model_name = "stable-vicuna-13b"
elif model_name == "HuggingFaceH4/llama-7b-ift-alpaca":
link = ALPACA_LINK
model_name = "alpaca-13b"
if model_name == "dolly-12b":
link = DOLLY_LINK
elif model_name == "vicuna-13b":
link = VICUNA_LINK
elif model_name == "koala-13b":
link = KOALA_LINK
elif model_name == "oasst-12b":
link = OASST_LINK
details_model_name = model_name.replace("/", "__")
details_link = f"https://huggingface.co/datasets/open-llm-leaderboard/details_{details_model_name}"
if not bool(os.getenv("DEBUG", "False")):
# We only add these checks when not debugging, as they are extremely slow
print(f"details_link: {details_link}")
try:
check_path = list(
API.list_files_info(
repo_id=f"open-llm-leaderboard/details_{details_model_name}",
paths="README.md",
repo_type="dataset",
)
)
print(f"check_path: {check_path}")
except Exception as err:
# No details repo for this model
print(f"No details repo for this model: {err}")
return model_hyperlink(link, model_name)
return model_hyperlink(link, model_name) + " " + model_hyperlink(details_link, "📑")
def styled_error(error):
return f"<p style='color: red; font-size: 20px; text-align: center;'>{error}</p>"
def styled_warning(warn):
return f"<p style='color: orange; font-size: 20px; text-align: center;'>{warn}</p>"
def styled_message(message):
return f"<p style='color: green; font-size: 20px; text-align: center;'>{message}</p>"
def has_no_nan_values(df, columns):
return df[columns].notna().all(axis=1)
def has_nan_values(df, columns):
return df[columns].isna().any(axis=1)
|