backend_demo / src /backend /run_eval_suite_lighteval.py
Shaltiel's picture
Updated json dump + fix evaluation
eb2a0ba
raw
history blame
2.5 kB
import json
import os
import logging
from datetime import datetime
from argparse import Namespace
from lighteval.main_accelerate import main, EnvConfig, create_model_config, load_model
from src.envs import RESULTS_REPO, CACHE_PATH, TOKEN, OWNER
from src.backend.manage_requests import EvalRequest
from lighteval.logging.evaluation_tracker import EnhancedJSONEncoder
logging.getLogger("openai").setLevel(logging.WARNING)
class DefaultNamespace(Namespace):
def __getattr__(self, name):
return self.__dict__.get(name, None)
def run_evaluation(eval_request: EvalRequest, task_names: str, batch_size: int, local_dir: str, accelerator: str, region: str, vendor: str, instance_size: str, instance_type: str, limit=None):
if limit:
print("WARNING: --limit SHOULD ONLY BE USED FOR TESTING. REAL METRICS SHOULD NOT BE COMPUTED USING LIMIT.")
args = DefaultNamespace(**{
"endpoint_model_name": eval_request.model,
"accelerator": accelerator,
"vendor": vendor,
"region": region,
"instance_size": instance_size,
"instance_type": instance_type,
"max_samples": limit,
"job_id": str(datetime.now()),
"push_results_to_hub": True,
"save_details": True,
"push_details_to_hub": True,
"public_run": False,
"cache_dir": CACHE_PATH,
"results_org": OWNER,
"output_dir": local_dir,
"override_batch_size": batch_size,
"custom_tasks": "custom_tasks.py",
"tasks": task_names,
"dataset_loading_processes": 24,
"num_fewshot_seeds": 0,
"reuse_existing": False
})
try:
results = main(args)
results["config_general"]["model_dtype"] = eval_request.precision
results["config_general"]["model_name"] = eval_request.model
results["config_general"]["model_sha"] = eval_request.revision
dumped = json.dumps(results, cls=EnhancedJSONEncoder, indent=2)
print(dumped)
except Exception as ex: # if eval failed, we force a cleanup
import traceback
traceback.print_exception(ex)
env_config = EnvConfig(token=TOKEN, cache_dir=args.cache_dir)
args.reuse_existing = True
model_config = create_model_config(args=args, accelerator=accelerator)
model, _ = load_model(config=model_config, env_config=env_config)
model.cleanup()
return results