backend_demo / app.py
Clémentine
added 'forbidden models' submission, to allow orgs to request their models to not be submitted in case of contamination
ed1fdef
raw
history blame
18.9 kB
import json
import os
from datetime import datetime, timezone
import gradio as gr
import numpy as np
import pandas as pd
from apscheduler.schedulers.background import BackgroundScheduler
from huggingface_hub import HfApi
from transformers import AutoConfig
from src.auto_leaderboard.get_model_metadata import apply_metadata, DO_NOT_SUBMIT_MODELS
from src.assets.text_content import *
from src.auto_leaderboard.load_results import get_eval_results_dicts, make_clickable_model
from src.assets.hardcoded_evals import gpt4_values, gpt35_values, baseline
from src.assets.css_html_js import custom_css, get_window_url_params
from src.utils_display import AutoEvalColumn, EvalQueueColumn, fields, styled_error, styled_warning, styled_message
from src.init import get_all_requested_models, load_all_info_from_hub
pd.set_option('display.precision', 1)
# clone / pull the lmeh eval data
H4_TOKEN = os.environ.get("H4_TOKEN", None)
QUEUE_REPO = "open-llm-leaderboard/requests"
RESULTS_REPO = "open-llm-leaderboard/results"
PRIVATE_QUEUE_REPO = "open-llm-leaderboard/private-requests"
PRIVATE_RESULTS_REPO = "open-llm-leaderboard/private-results"
IS_PUBLIC = bool(os.environ.get("IS_PUBLIC", True))
EVAL_REQUESTS_PATH = "eval-queue"
EVAL_RESULTS_PATH = "eval-results"
EVAL_REQUESTS_PATH_PRIVATE = "eval-queue-private"
EVAL_RESULTS_PATH_PRIVATE = "eval-results-private"
api = HfApi()
def restart_space():
api.restart_space(
repo_id="HuggingFaceH4/open_llm_leaderboard", token=H4_TOKEN
)
eval_queue, requested_models, eval_results = load_all_info_from_hub(QUEUE_REPO, RESULTS_REPO, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH)
if not IS_PUBLIC:
eval_queue_private, requested_models_private, eval_results_private = load_all_info_from_hub(PRIVATE_QUEUE_REPO, PRIVATE_RESULTS_REPO, EVAL_REQUESTS_PATH_PRIVATE, EVAL_RESULTS_PATH_PRIVATE)
else:
eval_queue_private, eval_results_private = None, None
COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden]
TYPES = [c.type for c in fields(AutoEvalColumn) if not c.hidden]
COLS_LITE = [c.name for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden]
TYPES_LITE = [c.type for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden]
if not IS_PUBLIC:
COLS.insert(2, AutoEvalColumn.precision.name)
TYPES.insert(2, AutoEvalColumn.precision.type)
EVAL_COLS = [c.name for c in fields(EvalQueueColumn)]
EVAL_TYPES = [c.type for c in fields(EvalQueueColumn)]
BENCHMARK_COLS = [c.name for c in [AutoEvalColumn.arc, AutoEvalColumn.hellaswag, AutoEvalColumn.mmlu, AutoEvalColumn.truthfulqa]]
def has_no_nan_values(df, columns):
return df[columns].notna().all(axis=1)
def has_nan_values(df, columns):
return df[columns].isna().any(axis=1)
def get_leaderboard_df():
if eval_results:
print("Pulling evaluation results for the leaderboard.")
eval_results.git_pull()
if eval_results_private:
print("Pulling evaluation results for the leaderboard.")
eval_results_private.git_pull()
all_data = get_eval_results_dicts()
if not IS_PUBLIC:
all_data.append(gpt4_values)
all_data.append(gpt35_values)
all_data.append(baseline)
apply_metadata(all_data) # Populate model type based on known hardcoded values in `metadata.py`
df = pd.DataFrame.from_records(all_data)
df = df.sort_values(by=[AutoEvalColumn.average.name], ascending=False)
df = df[COLS].round(decimals=2)
# filter out if any of the benchmarks have not been produced
df = df[has_no_nan_values(df, BENCHMARK_COLS)]
return df
def get_evaluation_queue_df():
if eval_queue:
print("Pulling changes for the evaluation queue.")
eval_queue.git_pull()
if eval_queue_private:
print("Pulling changes for the evaluation queue.")
eval_queue_private.git_pull()
entries = [
entry
for entry in os.listdir(EVAL_REQUESTS_PATH)
if not entry.startswith(".")
]
all_evals = []
for entry in entries:
if ".json" in entry:
file_path = os.path.join(EVAL_REQUESTS_PATH, entry)
with open(file_path) as fp:
data = json.load(fp)
data["# params"] = "unknown"
data["model"] = make_clickable_model(data["model"])
data["revision"] = data.get("revision", "main")
all_evals.append(data)
elif ".md" not in entry:
# this is a folder
sub_entries = [
e
for e in os.listdir(f"{EVAL_REQUESTS_PATH}/{entry}")
if not e.startswith(".")
]
for sub_entry in sub_entries:
file_path = os.path.join(EVAL_REQUESTS_PATH, entry, sub_entry)
with open(file_path) as fp:
data = json.load(fp)
# data["# params"] = get_n_params(data["model"])
data["model"] = make_clickable_model(data["model"])
all_evals.append(data)
pending_list = [e for e in all_evals if e["status"] in ["PENDING", "RERUN"]]
running_list = [e for e in all_evals if e["status"] == "RUNNING"]
finished_list = [e for e in all_evals if e["status"].startswith("FINISHED")]
df_pending = pd.DataFrame.from_records(pending_list, columns=EVAL_COLS)
df_running = pd.DataFrame.from_records(running_list, columns=EVAL_COLS)
df_finished = pd.DataFrame.from_records(finished_list, columns=EVAL_COLS)
return df_finished[EVAL_COLS], df_running[EVAL_COLS], df_pending[EVAL_COLS]
original_df = get_leaderboard_df()
leaderboard_df = original_df.copy()
(
finished_eval_queue_df,
running_eval_queue_df,
pending_eval_queue_df,
) = get_evaluation_queue_df()
def is_model_on_hub(model_name, revision) -> bool:
try:
AutoConfig.from_pretrained(model_name, revision=revision)
return True, None
except ValueError as e:
return False, "needs to be launched with `trust_remote_code=True`. For safety reason, we do not allow these models to be automatically submitted to the leaderboard."
except Exception as e:
print(f"Could not get the model config from the hub.: {e}")
return False, "was not found on hub!"
def add_new_eval(
model: str,
base_model: str,
revision: str,
precision: str,
private: bool,
weight_type: str,
model_type: str,
):
precision = precision.split(" ")[0]
current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ")
if model_type is None or model_type == "":
return styled_error("Please select a model type.")
# check the model actually exists before adding the eval
if revision == "":
revision = "main"
if weight_type in ["Delta", "Adapter"]:
base_model_on_hub, error = is_model_on_hub(base_model, revision)
if not base_model_on_hub:
return styled_error(f'Base model "{base_model}" {error}')
if not weight_type == "Adapter":
model_on_hub, error = is_model_on_hub(model, revision)
if not model_on_hub:
return styled_error(f'Model "{model}" {error}')
print("adding new eval")
eval_entry = {
"model": model,
"base_model": base_model,
"revision": revision,
"private": private,
"precision": precision,
"weight_type": weight_type,
"status": "PENDING",
"submitted_time": current_time,
"model_type": model_type,
}
user_name = ""
model_path = model
if "/" in model:
user_name = model.split("/")[0]
model_path = model.split("/")[1]
OUT_DIR = f"{EVAL_REQUESTS_PATH}/{user_name}"
os.makedirs(OUT_DIR, exist_ok=True)
out_path = f"{OUT_DIR}/{model_path}_eval_request_{private}_{precision}_{weight_type}.json"
# Check if the model has been forbidden:
if out_path.split("eval-queue/")[1] in DO_NOT_SUBMIT_MODELS:
return styled_warning("Model authors have requested that their model be not submitted on the leaderboard.")
# Check for duplicate submission
if out_path.split("eval-queue/")[1].lower() in requested_models:
return styled_warning("This model has been already submitted.")
with open(out_path, "w") as f:
f.write(json.dumps(eval_entry))
api.upload_file(
path_or_fileobj=out_path,
path_in_repo=out_path.split("eval-queue/")[1],
repo_id=QUEUE_REPO,
token=H4_TOKEN,
repo_type="dataset",
commit_message=f"Add {model} to eval queue",
)
# remove the local file
os.remove(out_path)
return styled_message("Your request has been submitted to the evaluation queue!\nPlease wait for up to an hour for the model to show in the PENDING list.")
def refresh():
leaderboard_df = get_leaderboard_df()
(
finished_eval_queue_df,
running_eval_queue_df,
pending_eval_queue_df,
) = get_evaluation_queue_df()
return (
leaderboard_df,
finished_eval_queue_df,
running_eval_queue_df,
pending_eval_queue_df,
)
def search_table(df, leaderboard_table, query):
if AutoEvalColumn.model_type.name in leaderboard_table.columns:
filtered_df = df[
(df[AutoEvalColumn.dummy.name].str.contains(query, case=False))
| (df[AutoEvalColumn.model_type.name].str.contains(query, case=False))
]
else:
filtered_df = df[(df[AutoEvalColumn.dummy.name].str.contains(query, case=False))]
return filtered_df[leaderboard_table.columns]
def select_columns(df, columns):
always_here_cols = [AutoEvalColumn.model_type_symbol.name, AutoEvalColumn.model.name]
# We use COLS to maintain sorting
filtered_df = df[always_here_cols + [c for c in COLS if c in df.columns and c in columns] + [AutoEvalColumn.dummy.name]]
return filtered_df
#TODO allow this to filter by values of any columns
def filter_items(df, leaderboard_table, query):
if query == "all":
return df[leaderboard_table.columns]
else:
query = query[0] #take only the emoji character
if AutoEvalColumn.model_type_symbol.name in leaderboard_table.columns:
filtered_df = df[(df[AutoEvalColumn.model_type_symbol.name] == query)]
else:
return leaderboard_table.columns
return filtered_df[leaderboard_table.columns]
def change_tab(query_param):
query_param = query_param.replace("'", '"')
query_param = json.loads(query_param)
if (
isinstance(query_param, dict)
and "tab" in query_param
and query_param["tab"] == "evaluation"
):
return gr.Tabs.update(selected=1)
else:
return gr.Tabs.update(selected=0)
demo = gr.Blocks(css=custom_css)
with demo:
gr.HTML(TITLE)
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
with gr.Tabs(elem_classes="tab-buttons") as tabs:
with gr.TabItem("🏅 LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0):
with gr.Row():
shown_columns = gr.CheckboxGroup(
choices = [c for c in COLS if c not in [AutoEvalColumn.dummy.name, AutoEvalColumn.model.name, AutoEvalColumn.model_type_symbol.name]],
value = [c for c in COLS_LITE if c not in [AutoEvalColumn.dummy.name, AutoEvalColumn.model.name, AutoEvalColumn.model_type_symbol.name]],
label="Select columns to show",
elem_id="column-select",
interactive=True,
)
with gr.Column(min_width=320):
search_bar = gr.Textbox(
placeholder="🔍 Search for your model and press ENTER...",
show_label=False,
elem_id="search-bar",
)
filter_columns = gr.Radio(
label="⏚ Filter model types",
choices = [
"all",
ModelType.PT.to_str(),
ModelType.FT.to_str(),
ModelType.IFT.to_str(),
ModelType.RL.to_str(),
],
value="all",
elem_id="filter-columns"
)
leaderboard_table = gr.components.Dataframe(
value=leaderboard_df[[AutoEvalColumn.model_type_symbol.name, AutoEvalColumn.model.name] + shown_columns.value + [AutoEvalColumn.dummy.name]],
headers=[AutoEvalColumn.model_type_symbol.name, AutoEvalColumn.model.name] + shown_columns.value + [AutoEvalColumn.dummy.name],
datatype=TYPES,
max_rows=None,
elem_id="leaderboard-table",
interactive=False,
visible=True,
)
# Dummy leaderboard for handling the case when the user uses backspace key
hidden_leaderboard_table_for_search = gr.components.Dataframe(
value=original_df,
headers=COLS,
datatype=TYPES,
max_rows=None,
visible=False,
)
search_bar.submit(
search_table,
[hidden_leaderboard_table_for_search, leaderboard_table, search_bar],
leaderboard_table,
)
shown_columns.change(select_columns, [hidden_leaderboard_table_for_search, shown_columns], leaderboard_table)
filter_columns.change(filter_items, [hidden_leaderboard_table_for_search, leaderboard_table, filter_columns], leaderboard_table)
with gr.TabItem("📝 About", elem_id="llm-benchmark-tab-table", id=2):
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
with gr.TabItem("🚀 Submit here! ", elem_id="llm-benchmark-tab-table", id=3):
with gr.Column():
with gr.Row():
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
with gr.Column():
with gr.Accordion(f"✅ Finished Evaluations ({len(finished_eval_queue_df)})", open=False):
with gr.Row():
finished_eval_table = gr.components.Dataframe(
value=finished_eval_queue_df,
headers=EVAL_COLS,
datatype=EVAL_TYPES,
max_rows=5,
)
with gr.Accordion(f"🔄 Running Evaluation Queue ({len(running_eval_queue_df)})", open=False):
with gr.Row():
running_eval_table = gr.components.Dataframe(
value=running_eval_queue_df,
headers=EVAL_COLS,
datatype=EVAL_TYPES,
max_rows=5,
)
with gr.Accordion(f"⏳ Pending Evaluation Queue ({len(pending_eval_queue_df)})", open=False):
with gr.Row():
pending_eval_table = gr.components.Dataframe(
value=pending_eval_queue_df,
headers=EVAL_COLS,
datatype=EVAL_TYPES,
max_rows=5,
)
with gr.Row():
gr.Markdown("# ✉️✨ Submit your model here!", elem_classes="markdown-text")
with gr.Row():
with gr.Column():
model_name_textbox = gr.Textbox(label="Model name")
revision_name_textbox = gr.Textbox(
label="revision", placeholder="main"
)
private = gr.Checkbox(
False, label="Private", visible=not IS_PUBLIC
)
model_type = gr.Dropdown(
choices=[
ModelType.PT.to_str(" : "),
ModelType.FT.to_str(" : "),
ModelType.IFT.to_str(" : "),
ModelType.RL.to_str(" : "),
],
label="Model type",
multiselect=False,
value=None,
interactive=True,
)
with gr.Column():
precision = gr.Dropdown(
choices=["float16", "bfloat16", "8bit (LLM.int8)", "4bit (QLoRA / FP4)"],
label="Precision",
multiselect=False,
value="float16",
interactive=True,
)
weight_type = gr.Dropdown(
choices=["Original", "Delta", "Adapter"],
label="Weights type",
multiselect=False,
value="Original",
interactive=True,
)
base_model_name_textbox = gr.Textbox(
label="Base model (for delta or adapter weights)"
)
submit_button = gr.Button("Submit Eval")
submission_result = gr.Markdown()
submit_button.click(
add_new_eval,
[
model_name_textbox,
base_model_name_textbox,
revision_name_textbox,
precision,
private,
weight_type,
model_type
],
submission_result,
)
with gr.Row():
refresh_button = gr.Button("Refresh")
refresh_button.click(
refresh,
inputs=[],
outputs=[
leaderboard_table,
finished_eval_table,
running_eval_table,
pending_eval_table,
],
)
with gr.Row():
with gr.Accordion("📙 Citation", open=False):
citation_button = gr.Textbox(
value=CITATION_BUTTON_TEXT,
label=CITATION_BUTTON_LABEL,
elem_id="citation-button",
).style(show_copy_button=True)
dummy = gr.Textbox(visible=False)
demo.load(
change_tab,
dummy,
tabs,
_js=get_window_url_params,
)
scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=3600)
scheduler.start()
demo.queue(concurrency_count=40).launch()