Shaltiel commited on
Commit
b686823
·
1 Parent(s): 1d6da9d

Prepped for QA test

Browse files
app.py CHANGED
@@ -11,8 +11,6 @@ from src.logging import LOGGER, read_logs
11
  sys.stdout = LOGGER
12
  sys.stderr = LOGGER
13
 
14
- #subprocess.run(["python", "scripts/fix_harness_import.py"])
15
-
16
  def launch_backend():
17
  _ = subprocess.run(["python", "main_backend_lighteval.py"])
18
 
 
11
  sys.stdout = LOGGER
12
  sys.stderr = LOGGER
13
 
 
 
14
  def launch_backend():
15
  _ = subprocess.run(["python", "main_backend_lighteval.py"])
16
 
custom_tasks.py CHANGED
@@ -6,84 +6,12 @@ This file generally create just a TASKS_TABLE and TASKS_GROUPS which are then im
6
 
7
  Author:
8
  """
9
- from lighteval.tasks.lighteval_task import LightevalTaskConfig
10
- from lighteval.tasks.requests import Doc
11
- from lighteval.tasks.tasks_prompt_formatting import LETTER_INDICES
12
-
13
-
14
- ## EVAL WITH NO SUBSET ##
15
- # This is how you create a simple tasks (like hellaswag) which has one single subset
16
- # attached to it, and one evaluation possible.
17
- task = LightevalTaskConfig(
18
- name="myothertask",
19
- prompt_function="prompt_fn", # must be defined in the file or imported from src/lighteval/tasks/tasks_prompt_formatting.py
20
- suite=["community"],
21
- hf_repo="",
22
- hf_subset="default",
23
- hf_avail_splits=[],
24
- evaluation_splits=[],
25
- few_shots_split="",
26
- few_shots_select="",
27
- metric=[""],
28
- )
29
-
30
- ## EVALS WITH SUBSET
31
- # This is how you create a subset task (like MMLU), which has several subset
32
- # each being its own evaluation task.
33
-
34
- # fmt: off
35
- SAMPLE_SUBSETS = [] # list of all the subsets to use for this eval
36
- # fmt: on
37
-
38
-
39
- class CustomSubsetTask(LightevalTaskConfig):
40
- def __init__(
41
- self,
42
- name,
43
- hf_subset,
44
- ):
45
- super().__init__(
46
- name=name,
47
- hf_subset=hf_subset,
48
- prompt_function="prompt_fn", # must be defined in the file
49
- hf_repo="",
50
- metric=[""],
51
- hf_avail_splits=[],
52
- evaluation_splits=[],
53
- few_shots_split="",
54
- few_shots_select="",
55
- suite=["community"],
56
- generation_size=-1,
57
- stop_sequence=None,
58
- output_regex=None,
59
- frozen=False,
60
- )
61
-
62
-
63
- ## DEFINE YOUR PROMPT FUNCTIONS
64
- # Define as many as you need for your different tasks
65
- def prompt_fn(line, task_name: str = None):
66
- """Defines how to go from a dataset line to a doc object.
67
- Follow examples in src/lighteval/tasks/tasks_prompt_formatting.py, or get more info
68
- about what this function should do in the README.
69
- """
70
- return Doc(
71
- task_name=task_name,
72
- query="",
73
- choices="",
74
- gold_index=0,
75
- instruction="",
76
- )
77
-
78
-
79
- ## STORE YOUR EVALS
80
- SUBSET_TASKS = [CustomSubsetTask(name=f"mytask:{subset}", hf_subset=subset) for subset in SAMPLE_SUBSETS]
81
- _TASKS = SUBSET_TASKS + [task]
82
 
83
  ## MODULE LOGIC
84
  # You should not need to touch this
85
  # Convert to dict for lighteval
86
- TASKS_TABLE = [task.as_dict() for task in _TASKS]
87
 
88
  if __name__ == "__main__":
89
  print(t["name"] for t in TASKS_TABLE)
 
6
 
7
  Author:
8
  """
9
+ from heq_task import *
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10
 
11
  ## MODULE LOGIC
12
  # You should not need to touch this
13
  # Convert to dict for lighteval
14
+ TASKS_TABLE = [task.as_dict() for task in [heq_task]]
15
 
16
  if __name__ == "__main__":
17
  print(t["name"] for t in TASKS_TABLE)
heq_task.py ADDED
@@ -0,0 +1,111 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import re
2
+ import string
3
+ from lighteval.tasks.lighteval_task import LightevalTaskConfig
4
+ from lighteval.metrics import Metrics, MetricCategory
5
+ from lighteval.metrics.utils import CorpusLevelMetric, MetricUseCase
6
+ import numpy as np
7
+ from lighteval.tasks.requests import Doc
8
+ from Levenshtein import distance
9
+ import collections
10
+
11
+ def get_tokens(s):
12
+ if not s:
13
+ return []
14
+ return normalize_answer(s).split()
15
+
16
+ ARTICLES_REGEX = re.compile(r"\b(a|an|the)\b", re.UNICODE)
17
+ def normalize_answer(s):
18
+ def remove_articles(text):
19
+ return ARTICLES_REGEX.sub(" ", text)
20
+ def white_space_fix(text):
21
+ return " ".join(text.split())
22
+
23
+ def remove_punc(text):
24
+ exclude = set(string.punctuation)
25
+ return "".join(ch for ch in text if ch not in exclude)
26
+
27
+ def lower(text):
28
+ return text.lower()
29
+
30
+ return white_space_fix(remove_articles(remove_punc(lower(s.replace('<pad>', '').replace('</s>', '').strip()))))
31
+
32
+ def compute_f1(a_gold, a_pred):
33
+ gold_toks = get_tokens(a_gold)
34
+ pred_toks = get_tokens(a_pred)
35
+ common = collections.Counter(gold_toks) & collections.Counter(pred_toks)
36
+ num_same = sum(common.values())
37
+ if len(gold_toks) == 0 or len(pred_toks) == 0:
38
+ # If either is no-answer, then F1 is 1 if they agree, 0 otherwise
39
+ return int(gold_toks == pred_toks)
40
+ if num_same == 0:
41
+ return 0
42
+ precision = 1.0 * num_same / len(pred_toks)
43
+ recall = 1.0 * num_same / len(gold_toks)
44
+ f1 = (2 * precision * recall) / (precision + recall)
45
+ return f1
46
+
47
+ def normalized_edit_similarity(p1, p2):
48
+ return 1-distance(p1, p2)/ max(len(p1), len(p2))
49
+
50
+ def compute_token_edit(a_gold, a_pred):
51
+ gold_toks = get_tokens(a_gold)
52
+ pred_toks = get_tokens(a_pred)
53
+ if len(gold_toks) == 0 or len(pred_toks) == 0:
54
+ # If either is no-answer, then F1 is 1 if they agree, 0 otherwise
55
+ return int(gold_toks == pred_toks)
56
+ num_same = sum([max([normalized_edit_similarity(gold_t, pred_t) for pred_t in pred_toks]) for gold_t in gold_toks])
57
+ if num_same == 0:
58
+ return 0
59
+ precision = 1.0 * num_same / len(pred_toks)
60
+ recall = 1.0 * num_same / len(gold_toks)
61
+ f1 = (2 * precision * recall) / (precision + recall)
62
+ return f1
63
+
64
+ def tlnls(a_gold, a_pred):
65
+ digit_count = sum(1 for char in a_pred if char.isdigit())
66
+ if digit_count < len(a_pred) / 2:
67
+ return compute_token_edit(a_gold, a_pred)
68
+ else:
69
+ return compute_f1(a_gold, a_pred)
70
+
71
+ def heq_eval_fn(golds: list[str], predictions: list[str]):
72
+ if len(predictions) > 1:
73
+ raise ValueError("Predictions should have one item")
74
+ return max([tlnls(x, predictions[0]) for x in golds])
75
+
76
+ heq_tlnls_metric = CorpusLevelMetric(
77
+ metric="heq_tlnls",
78
+ higher_is_better=True,
79
+ category=MetricCategory.GENERATIVE,
80
+ use_case=MetricUseCase.ACCURACY,
81
+ corpus_level_fn=np.mean,
82
+ sample_level_fn=heq_eval_fn
83
+ )
84
+
85
+ def heq_prompt_fn(line, task_name: str = None):
86
+ """Defines how to go from a dataset line to a doc object.
87
+ Follow examples in src/lighteval/tasks/tasks_prompt_formatting.py, or get more info
88
+ about what this function should do in the README.
89
+ """
90
+ return Doc(
91
+ task_name=task_name,
92
+ query=line["prompt"],
93
+ choices=line["response"],
94
+ gold_index=list(range(line["response"])),
95
+ instruction="",
96
+ )
97
+
98
+ ## EVAL WITH NO SUBSET ##
99
+ # This is how you create a simple tasks (like hellaswag) which has one single subset
100
+ # attached to it, and one evaluation possible.
101
+ heq_task = LightevalTaskConfig(
102
+ name="heq-qa-tlnls",
103
+ prompt_function="heq_prompt_fn", # must be defined in the file or imported from src/lighteval/tasks/tasks_prompt_formatting.py
104
+ suite=["custom"],
105
+ hf_repo="dicta-hebrew-llm-leaderboard/tests",
106
+ hf_subset="default",
107
+ hf_avail_splits=["heq"],
108
+ evaluation_splits=["heq"],
109
+ metric=[heq_tlnls_metric],
110
+ stop_sequence=['\n']
111
+ )
main_backend_harness.py DELETED
@@ -1,78 +0,0 @@
1
- import logging
2
- import pprint
3
-
4
- from huggingface_hub import snapshot_download
5
-
6
- logging.getLogger("openai").setLevel(logging.WARNING)
7
-
8
- from backend.run_eval_suite_harness import run_evaluation
9
- from src.backend.manage_requests import check_completed_evals, get_eval_requests, set_eval_request
10
- from src.backend.sort_queue import sort_models_by_priority
11
-
12
- from src.envs import QUEUE_REPO, EVAL_REQUESTS_PATH_BACKEND, RESULTS_REPO, EVAL_RESULTS_PATH_BACKEND, DEVICE, API, LIMIT, TOKEN
13
- from src.about import Tasks, NUM_FEWSHOT
14
- TASKS_HARNESS = [task.value.benchmark for task in Tasks]
15
-
16
- logging.basicConfig(level=logging.ERROR)
17
- pp = pprint.PrettyPrinter(width=80)
18
-
19
- PENDING_STATUS = "PENDING"
20
- RUNNING_STATUS = "RUNNING"
21
- FINISHED_STATUS = "FINISHED"
22
- FAILED_STATUS = "FAILED"
23
-
24
- snapshot_download(repo_id=RESULTS_REPO, revision="main", local_dir=EVAL_RESULTS_PATH_BACKEND, repo_type="dataset", max_workers=60, token=TOKEN)
25
- snapshot_download(repo_id=QUEUE_REPO, revision="main", local_dir=EVAL_REQUESTS_PATH_BACKEND, repo_type="dataset", max_workers=60, token=TOKEN)
26
-
27
- def run_auto_eval():
28
- current_pending_status = [PENDING_STATUS]
29
-
30
- # pull the eval dataset from the hub and parse any eval requests
31
- # check completed evals and set them to finished
32
- check_completed_evals(
33
- api=API,
34
- checked_status=RUNNING_STATUS,
35
- completed_status=FINISHED_STATUS,
36
- failed_status=FAILED_STATUS,
37
- hf_repo=QUEUE_REPO,
38
- local_dir=EVAL_REQUESTS_PATH_BACKEND,
39
- hf_repo_results=RESULTS_REPO,
40
- local_dir_results=EVAL_RESULTS_PATH_BACKEND
41
- )
42
-
43
- # Get all eval request that are PENDING, if you want to run other evals, change this parameter
44
- eval_requests = get_eval_requests(job_status=current_pending_status, hf_repo=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH_BACKEND)
45
- # Sort the evals by priority (first submitted first run)
46
- eval_requests = sort_models_by_priority(api=API, models=eval_requests)
47
-
48
- print(f"Found {len(eval_requests)} {','.join(current_pending_status)} eval requests")
49
-
50
- if len(eval_requests) == 0:
51
- return
52
-
53
- eval_request = eval_requests[0]
54
- pp.pprint(eval_request)
55
-
56
- set_eval_request(
57
- api=API,
58
- eval_request=eval_request,
59
- set_to_status=RUNNING_STATUS,
60
- hf_repo=QUEUE_REPO,
61
- local_dir=EVAL_REQUESTS_PATH_BACKEND,
62
- )
63
-
64
- run_evaluation(
65
- eval_request=eval_request,
66
- task_names=TASKS_HARNESS,
67
- num_fewshot=NUM_FEWSHOT,
68
- local_dir=EVAL_RESULTS_PATH_BACKEND,
69
- results_repo=RESULTS_REPO,
70
- batch_size=1,
71
- device=DEVICE,
72
- no_cache=True,
73
- limit=LIMIT
74
- )
75
-
76
-
77
- if __name__ == "__main__":
78
- run_auto_eval()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
main_backend_lighteval.py CHANGED
@@ -63,9 +63,9 @@ def run_auto_eval():
63
  # This needs to be done
64
  #instance_size, instance_type = get_instance_for_model(eval_request)
65
  # For GPU
66
- # instance_size, instance_type = "small", "g4dn.xlarge"
67
  # For CPU
68
- instance_size, instance_type = "medium", "c6i"
69
 
70
  run_evaluation(
71
  eval_request=eval_request,
 
63
  # This needs to be done
64
  #instance_size, instance_type = get_instance_for_model(eval_request)
65
  # For GPU
66
+ instance_size, instance_type = "small", "g4dn.xlarge"
67
  # For CPU
68
+ # instance_size, instance_type = "medium", "c6i"
69
 
70
  run_evaluation(
71
  eval_request=eval_request,
requirements.txt CHANGED
@@ -13,7 +13,7 @@ requests==2.28.2
13
  tqdm==4.65.0
14
  transformers
15
  tokenizers>=0.15.0
16
- git+https://github.com/EleutherAI/lm-evaluation-harness.git@b281b0921b636bc36ad05c0b0b0763bd6dd43463#egg=lm-eval
17
  git+https://github.com/huggingface/lighteval.git#egg=lighteval
18
  accelerate==0.24.1
19
- sentencepiece
 
 
13
  tqdm==4.65.0
14
  transformers
15
  tokenizers>=0.15.0
 
16
  git+https://github.com/huggingface/lighteval.git#egg=lighteval
17
  accelerate==0.24.1
18
+ sentencepiece
19
+ Levenshtein
scripts/fix_harness_import.py DELETED
@@ -1,11 +0,0 @@
1
- """This file should be used after pip install -r requirements.
2
- It creates a folder not ported during harness package creation (as they don't use a Manifest file atm and it ignore `.json` files).
3
- It will need to be updated if we want to use the harness' version of big bench to actually copy the json files.
4
- """
5
- import os
6
-
7
- import lm_eval
8
-
9
- if __name__ == "__main__":
10
- lm_eval_path = lm_eval.__path__[0]
11
- os.makedirs(os.path.join(lm_eval_path, "datasets", "bigbench_resources"), exist_ok=True)
 
 
 
 
 
 
 
 
 
 
 
 
src/about.py CHANGED
@@ -20,5 +20,5 @@ NUM_FEWSHOT = 0 # Change with your few shot
20
  TASKS_HARNESS = [task.value.benchmark for task in Tasks]
21
  # ---------------------------------------------------
22
 
23
- TASKS_LIGHTEVAL = "lighteval|anli:r1|0|0,lighteval|logiqa|0|0"
24
- #custom|myothertask|0|0
 
20
  TASKS_HARNESS = [task.value.benchmark for task in Tasks]
21
  # ---------------------------------------------------
22
 
23
+ # TASKS_LIGHTEVAL = "lighteval|anli:r1|0|0,lighteval|logiqa|0|0"
24
+ TASKS_LIGHTEVAL = "custom|heq-qa-tlnls|0|0"
src/backend/run_eval_suite_harness.py DELETED
@@ -1,57 +0,0 @@
1
- import json
2
- import os
3
- import logging
4
- from datetime import datetime
5
-
6
- from lm_eval import tasks, evaluator, utils
7
-
8
- from src.envs import RESULTS_REPO, API
9
- from src.backend.manage_requests import EvalRequest
10
-
11
- logging.getLogger("openai").setLevel(logging.WARNING)
12
-
13
- def run_evaluation(eval_request: EvalRequest, task_names, num_fewshot, batch_size, device, local_dir: str, results_repo: str, no_cache=True, limit=None):
14
- if limit:
15
- print(
16
- "WARNING: --limit SHOULD ONLY BE USED FOR TESTING. REAL METRICS SHOULD NOT BE COMPUTED USING LIMIT."
17
- )
18
-
19
- task_names = utils.pattern_match(task_names, tasks.ALL_TASKS)
20
-
21
- print(f"Selected Tasks: {task_names}")
22
-
23
- results = evaluator.simple_evaluate(
24
- model="hf-causal-experimental", # "hf-causal"
25
- model_args=eval_request.get_model_args(),
26
- tasks=task_names,
27
- num_fewshot=num_fewshot,
28
- batch_size=batch_size,
29
- device=device,
30
- no_cache=no_cache,
31
- limit=limit,
32
- write_out=True,
33
- output_base_path="logs"
34
- )
35
-
36
- results["config"]["model_dtype"] = eval_request.precision
37
- results["config"]["model_name"] = eval_request.model
38
- results["config"]["model_sha"] = eval_request.revision
39
-
40
- dumped = json.dumps(results, indent=2)
41
- print(dumped)
42
-
43
- output_path = os.path.join(local_dir, *eval_request.model.split("/"), f"results_{datetime.now()}.json")
44
- os.makedirs(os.path.dirname(output_path), exist_ok=True)
45
- with open(output_path, "w") as f:
46
- f.write(dumped)
47
-
48
- print(evaluator.make_table(results))
49
-
50
- API.upload_file(
51
- path_or_fileobj=output_path,
52
- path_in_repo=f"{eval_request.model}/results_{datetime.now()}.json",
53
- repo_id=results_repo,
54
- repo_type="dataset",
55
- )
56
-
57
- return results
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
src/envs.py CHANGED
@@ -6,19 +6,19 @@ from huggingface_hub import HfApi
6
  # ----------------------------------
7
  TOKEN = os.environ.get("TOKEN") # A read/write token for your org
8
 
9
- OWNER = "demo-leaderboard-backend" # Change to your org - don't forget to create a results and request file
10
 
11
  # For harness evaluations
12
  DEVICE = "cpu" # "cuda:0" if you add compute, for harness evaluations
13
  LIMIT = 20 # !!!! Should be None for actual evaluations!!!
14
 
15
  # For lighteval evaluations
16
- ACCELERATOR = "cpu"
17
  REGION = "us-east-1"
18
  VENDOR = "aws"
19
  # ----------------------------------
20
 
21
- REPO_ID = f"{OWNER}/leaderboard-backend"
22
  QUEUE_REPO = f"{OWNER}/requests"
23
  RESULTS_REPO = f"{OWNER}/results"
24
 
 
6
  # ----------------------------------
7
  TOKEN = os.environ.get("TOKEN") # A read/write token for your org
8
 
9
+ OWNER = "dicta-hebrew-llm-leaderboard" # Change to your org - don't forget to create a results and request file
10
 
11
  # For harness evaluations
12
  DEVICE = "cpu" # "cuda:0" if you add compute, for harness evaluations
13
  LIMIT = 20 # !!!! Should be None for actual evaluations!!!
14
 
15
  # For lighteval evaluations
16
+ ACCELERATOR = "cuda:0"
17
  REGION = "us-east-1"
18
  VENDOR = "aws"
19
  # ----------------------------------
20
 
21
+ # REPO_ID = f"{OWNER}/leaderboard-backend"
22
  QUEUE_REPO = f"{OWNER}/requests"
23
  RESULTS_REPO = f"{OWNER}/results"
24
 
src/logging.py CHANGED
@@ -19,12 +19,12 @@ class Logger:
19
 
20
  def read_logs():
21
  sys.stdout.flush()
22
- #API.upload_file(
23
- # path_or_fileobj="output.log",
24
- # path_in_repo="demo-backend.log",
25
- # repo_id="demo-leaderboard-backend/logs",
26
- # repo_type="dataset",
27
- #)
28
 
29
  with open("output.log", "r") as f:
30
  return f.read()
 
19
 
20
  def read_logs():
21
  sys.stdout.flush()
22
+ API.upload_file(
23
+ path_or_fileobj="output.log",
24
+ path_in_repo="demo-backend.log",
25
+ repo_id="demo-leaderboard-backend/logs",
26
+ repo_type="dataset",
27
+ )
28
 
29
  with open("output.log", "r") as f:
30
  return f.read()
src/populate.py DELETED
@@ -1,56 +0,0 @@
1
- import json
2
- import os
3
-
4
- import pandas as pd
5
-
6
- from src.display.formatting import has_no_nan_values, make_clickable_model
7
- from src.display.utils import AutoEvalColumn, EvalQueueColumn
8
- from src.leaderboard.read_evals import get_raw_eval_results
9
-
10
-
11
- def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchmark_cols: list) -> pd.DataFrame:
12
- raw_data = get_raw_eval_results(results_path, requests_path)
13
- all_data_json = [v.to_dict() for v in raw_data]
14
-
15
- df = pd.DataFrame.from_records(all_data_json)
16
- df = df.sort_values(by=[AutoEvalColumn.average.name], ascending=False)
17
- df = df[cols].round(decimals=2)
18
-
19
- # filter out if any of the benchmarks have not been produced
20
- df = df[has_no_nan_values(df, benchmark_cols)]
21
- return raw_data, df
22
-
23
-
24
- def get_evaluation_queue_df(save_path: str, cols: list) -> list[pd.DataFrame]:
25
- entries = [entry for entry in os.listdir(save_path) if not entry.startswith(".")]
26
- all_evals = []
27
-
28
- for entry in entries:
29
- if ".json" in entry:
30
- file_path = os.path.join(save_path, entry)
31
- with open(file_path) as fp:
32
- data = json.load(fp)
33
-
34
- data[EvalQueueColumn.model.name] = make_clickable_model(data["model"])
35
- data[EvalQueueColumn.revision.name] = data.get("revision", "main")
36
-
37
- all_evals.append(data)
38
- elif ".md" not in entry:
39
- # this is a folder
40
- sub_entries = [e for e in os.listdir(f"{save_path}/{entry}") if not e.startswith(".")]
41
- for sub_entry in sub_entries:
42
- file_path = os.path.join(save_path, entry, sub_entry)
43
- with open(file_path) as fp:
44
- data = json.load(fp)
45
-
46
- data[EvalQueueColumn.model.name] = make_clickable_model(data["model"])
47
- data[EvalQueueColumn.revision.name] = data.get("revision", "main")
48
- all_evals.append(data)
49
-
50
- pending_list = [e for e in all_evals if e["status"] in ["PENDING", "RERUN"]]
51
- running_list = [e for e in all_evals if e["status"] == "RUNNING"]
52
- finished_list = [e for e in all_evals if e["status"].startswith("FINISHED") or e["status"] == "PENDING_NEW_EVAL"]
53
- df_pending = pd.DataFrame.from_records(pending_list, columns=cols)
54
- df_running = pd.DataFrame.from_records(running_list, columns=cols)
55
- df_finished = pd.DataFrame.from_records(finished_list, columns=cols)
56
- return df_finished[cols], df_running[cols], df_pending[cols]