import re import string from lighteval.tasks.lighteval_task import LightevalTaskConfig from lighteval.metrics import Metrics, MetricCategory from lighteval.metrics.utils import CorpusLevelMetric, MetricUseCase from aenum import extend_enum import numpy as np from lighteval.tasks.requests import Doc from Levenshtein import distance import collections from lighteval.utils import as_list def get_tokens(s): if not s: return [] return normalize_answer(s).split() ARTICLES_REGEX = re.compile(r"\b(a|an|the)\b", re.UNICODE) def normalize_answer(s): def remove_articles(text): return ARTICLES_REGEX.sub(" ", text) def white_space_fix(text): return " ".join(text.split()) def remove_punc(text): exclude = set(string.punctuation) return "".join(ch for ch in text if ch not in exclude) def lower(text): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(s.replace('', '').replace('', '').strip())))) def compute_f1(a_gold, a_pred): gold_toks = get_tokens(a_gold) pred_toks = get_tokens(a_pred) common = collections.Counter(gold_toks) & collections.Counter(pred_toks) num_same = sum(common.values()) if len(gold_toks) == 0 or len(pred_toks) == 0: # If either is no-answer, then F1 is 1 if they agree, 0 otherwise return int(gold_toks == pred_toks) if num_same == 0: return 0 precision = 1.0 * num_same / len(pred_toks) recall = 1.0 * num_same / len(gold_toks) f1 = (2 * precision * recall) / (precision + recall) return f1 def normalized_edit_similarity(p1, p2): return 1-distance(p1, p2)/ max(len(p1), len(p2)) def compute_token_edit(a_gold, a_pred): gold_toks = get_tokens(a_gold) pred_toks = get_tokens(a_pred) if len(gold_toks) == 0 or len(pred_toks) == 0: # If either is no-answer, then F1 is 1 if they agree, 0 otherwise return int(gold_toks == pred_toks) num_same = sum([max([normalized_edit_similarity(gold_t, pred_t) for pred_t in pred_toks]) for gold_t in gold_toks]) if num_same == 0: return 0 precision = 1.0 * num_same / len(pred_toks) recall = 1.0 * num_same / len(gold_toks) f1 = (2 * precision * recall) / (precision + recall) return f1 def tlnls(a_gold, a_pred): digit_count = sum(1 for char in a_pred if char.isdigit()) if digit_count < len(a_pred) / 2: return compute_token_edit(a_gold, a_pred) else: return compute_f1(a_gold, a_pred) def heq_eval_fn(golds: list[str], predictions: list[str], formatted_doc: Doc = None): if len(predictions) > 1: raise ValueError("Predictions should have one item") pred = re.sub('<[^>]+>', '', predictions[0]) # remove xml tags return max([tlnls(x, pred) for x in golds]) heq_tlnls_metric = CorpusLevelMetric( metric="heq_tlnls", higher_is_better=True, category=MetricCategory.GENERATIVE, use_case=MetricUseCase.ACCURACY, corpus_level_fn=np.mean, sample_level_fn=heq_eval_fn ) extend_enum(Metrics, 'heq_tlnls_metric', heq_tlnls_metric) def heq_prompt_fn(line, task_name: str = None): """Defines how to go from a dataset line to a doc object. Follow examples in src/lighteval/tasks/tasks_prompt_formatting.py, or get more info about what this function should do in the README. """ return Doc( task_name=task_name, query=line["prompt"], choices=line["response"], gold_index=list(range(len(line["response"]))), instruction="", ) # This is how you create a simple tasks (like hellaswag) which has one single subset # attached to it, and one evaluation possible. heq_task = LightevalTaskConfig( name="heq-qa-tlnls", prompt_function="heq_prompt_fn", # must be defined in the file or imported from src/lighteval/tasks/tasks_prompt_formatting.py suite=["custom"], hf_repo="dicta-hebrew-llm-leaderboard/tests", hf_subset="default", hf_avail_splits=["heq"], evaluation_splits=["heq"], metric=['heq_tlnls_metric'], stop_sequence=['\n'], generation_size=64 ) heq_task.stop_sequence = as_list(heq_task.stop_sequence)