import os from huggingface_hub import HfApi # Info to change for your repository # ---------------------------------- TOKEN = os.environ.get("TOKEN") # A read/write token for your org OWNER = "dicta-hebrew-llm-leaderboard" # Change to your org - don't forget to create a results and request file # For harness evaluations DEVICE = "cpu" # "cuda:0" if you add compute, for harness evaluations LIMIT = 20 # !!!! Should be None for actual evaluations!!! # For lighteval evaluations ACCELERATOR = "gpu" REGION = "us-east-1" VENDOR = "aws" # ---------------------------------- # REPO_ID = f"{OWNER}/leaderboard-backend" QUEUE_REPO = f"{OWNER}/requests" RESULTS_REPO = f"{OWNER}/results" # If you setup a cache later, just change HF_HOME CACHE_PATH=os.getenv("HF_HOME", ".") # Local caches EVAL_REQUESTS_PATH = os.path.join(CACHE_PATH, "eval-queue") EVAL_RESULTS_PATH = os.path.join(CACHE_PATH, "eval-results") EVAL_REQUESTS_PATH_BACKEND = os.path.join(CACHE_PATH, "eval-queue-bk") EVAL_RESULTS_PATH_BACKEND = os.path.join(CACHE_PATH, "eval-results-bk") API = HfApi(token=TOKEN)