Spaces:
Running
Running
clement-bonnet
commited on
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import jax
|
3 |
+
import numpy as np
|
4 |
+
# Import your JAX model here
|
5 |
+
|
6 |
+
def predict(x: float, y: float):
|
7 |
+
"""
|
8 |
+
Replace this with your actual JAX model inference
|
9 |
+
"""
|
10 |
+
# This is just a placeholder - replace with your model
|
11 |
+
return {
|
12 |
+
"prediction": float(np.sin(x * 3.14) * np.cos(y * 3.14)),
|
13 |
+
"x": x,
|
14 |
+
"y": y
|
15 |
+
}
|
16 |
+
|
17 |
+
# Create Gradio interface with API endpoint
|
18 |
+
demo = gr.Interface(
|
19 |
+
fn=predict,
|
20 |
+
inputs=[
|
21 |
+
gr.Number(label="X coordinate", minimum=0, maximum=1),
|
22 |
+
gr.Number(label="Y coordinate", minimum=0, maximum=1)
|
23 |
+
],
|
24 |
+
outputs=gr.JSON(),
|
25 |
+
title="Research Visualization ML Model",
|
26 |
+
description="Click on the square to generate predictions",
|
27 |
+
allow_flagging="never"
|
28 |
+
)
|
29 |
+
|
30 |
+
# Enable API endpoint
|
31 |
+
demo.launch()
|