import gradio as gr import jax import numpy as np # Import your JAX model here def predict(x: float, y: float): """ Replace this with your actual JAX model inference """ # This is just a placeholder - replace with your model return { "prediction": float(np.sin(x * 3.14) * np.cos(y * 3.14)), "x": x, "y": y } # Create Gradio interface with API endpoint demo = gr.Interface( fn=predict, inputs=[ gr.Number(label="X coordinate", minimum=0, maximum=1), gr.Number(label="Y coordinate", minimum=0, maximum=1) ], outputs=gr.JSON(), title="Research Visualization ML Model", description="Click on the square to generate predictions", allow_flagging="never" ) # Enable API endpoint demo.launch()