Merge remote-tracking branch 'origin/main'
Browse files
app.py
CHANGED
@@ -1,33 +1,43 @@
|
|
1 |
-
# Import necessary libraries
|
2 |
import streamlit as st
|
3 |
-
import transformers
|
4 |
import torch
|
5 |
-
from transformers import
|
6 |
|
7 |
-
# Set up
|
8 |
st.title("Emotion Detection with Transformers")
|
9 |
|
10 |
-
#
|
11 |
user_input = st.text_area("Enter your text:")
|
12 |
|
13 |
|
14 |
-
#
|
15 |
-
@st.cache_data
|
16 |
-
def
|
17 |
-
|
|
|
|
|
|
|
18 |
|
19 |
|
20 |
-
|
21 |
-
sentiment_analyzer = load_model()
|
22 |
|
23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
if st.button("Analyze Emotion"):
|
25 |
-
|
26 |
-
|
27 |
-
result = sentiment_analyzer(user_input)
|
28 |
-
|
29 |
-
# Display the result
|
30 |
-
emotion = result[0]['label']
|
31 |
-
st.write(f"Emotion: {emotion}")
|
32 |
-
else:
|
33 |
-
st.warning("Please enter some text to analyze.")
|
|
|
|
|
1 |
import streamlit as st
|
|
|
2 |
import torch
|
3 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
4 |
|
5 |
+
# Set up Streamlit
|
6 |
st.title("Emotion Detection with Transformers")
|
7 |
|
8 |
+
# Text input
|
9 |
user_input = st.text_area("Enter your text:")
|
10 |
|
11 |
|
12 |
+
# Function to load model and tokenizer using @st.cache_data
|
13 |
+
@st.cache_data()
|
14 |
+
def load_model_and_tokenizer():
|
15 |
+
model_name = "mrm8488/t5-base-finetuned-emotion"
|
16 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
17 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
18 |
+
return tokenizer, model
|
19 |
|
20 |
|
21 |
+
tokenizer, model = load_model_and_tokenizer()
|
|
|
22 |
|
23 |
+
|
24 |
+
# Function to analyze emotion
|
25 |
+
def analyze_emotion(text):
|
26 |
+
if text.strip() == "":
|
27 |
+
return "Please enter some text to analyze."
|
28 |
+
|
29 |
+
input_ids = tokenizer.encode(text + '</s>', return_tensors='pt')
|
30 |
+
|
31 |
+
output = model.generate(input_ids=input_ids,
|
32 |
+
max_length=2)
|
33 |
+
|
34 |
+
dec = [tokenizer.decode(ids, skip_special_tokens=True) for ids in output]
|
35 |
+
label = dec[0]
|
36 |
+
|
37 |
+
return f"Emotion: {label.capitalize()}"
|
38 |
+
|
39 |
+
|
40 |
+
# Analyze button
|
41 |
if st.button("Analyze Emotion"):
|
42 |
+
result = analyze_emotion(user_input)
|
43 |
+
st.write(result)
|
|
|
|
|
|
|
|
|
|
|
|
|
|