Spaces:
Runtime error
Runtime error
File size: 2,426 Bytes
f52a776 108dbc4 f52a776 0394a07 f52a776 2b2d98d f52a776 9f23c08 f52a776 9f23c08 f52a776 9f23c08 f52a776 9f23c08 f52a776 9f23c08 f52a776 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 |
"""
Adapted from https://huggingface.co/spaces/stabilityai/stable-diffusion
"""
import time
import keras_cv
import gradio as gr
from tensorflow import keras
from share_btn import community_icon_html, loading_icon_html, share_js
from constants import css, img_height, img_width, num_images_to_gen, unconditional_guidance_scale
keras.mixed_precision.set_global_policy("mixed_float16")
# Load model
weights_path = keras.utils.get_file(
origin="https://huggingface.co/clint-greene/magic-the-gathering-sd/resolve/main/magic-the-gathering-sd.h5",
)
magic_model = keras_cv.models.StableDiffusion(
img_width=img_width, img_height=img_height
)
magic_model.diffusion_model.load_weights(weights_path)
magic_model.diffusion_model.compile(jit_compile=True)
magic_model.decoder.compile(jit_compile=True)
magic_model.text_encoder.compile(jit_compile=True)
# Warm-up the model
_ = magic_model.text_to_image("flying dragons", batch_size=num_images_to_gen, num_steps=15)
def generate_image_fn(prompt: str, steps: int) -> list:
start_time = time.time()
# `images is an `np.ndarray`. So we convert it to a list of ndarrays.
# Each ndarray represents a generated image.
# Reference: https://gradio.app/docs/#gallery
images = magic_model.text_to_image(
prompt,
batch_size=num_images_to_gen,
num_steps=steps,
unconditional_guidance_scale=unconditional_guidance_scale,
)
end_time = time.time()
print(f"Time taken: {end_time - start_time} seconds.")
return [image for image in images]
description = "This Space demonstrates a fine-tuned Stable Diffusion model. You can use it for generating custom Magic the Gathering cards. To get started, either enter a prompt or pick one from the examples below. For details on the fine-tuning procedure, refer to [this tutorial](https://gpuopen.com/)."
article = "We use mixed-precision and XLA to speed up the inference latency."
gr.Interface(
generate_image_fn,
inputs=[
gr.Textbox(
label="Enter your prompt",
max_lines=1,
placeholder="Jedi",
),
gr.Slider(value=30, minimum=10, maximum=100, step=1),
],
outputs=gr.Gallery().style(height="auto"),
title="Generate custom magic the gathering cards",
description=description,
article=article,
examples=[["Yoda", 30], ["Lisa Su", 30]],
allow_flagging=False,
).launch(enable_queue=True)
|