File size: 18,210 Bytes
dbf5021
350bef9
 
 
072d8d2
350bef9
05ef38f
98e453d
350bef9
 
072d8d2
350bef9
dbf5021
05ef38f
 
 
 
 
 
 
 
dbf5021
350bef9
 
 
dbf5021
350bef9
 
 
 
05ef38f
 
350bef9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dbf5021
350bef9
 
dbf5021
350bef9
 
dbf5021
350bef9
 
6bfc071
350bef9
 
072d8d2
350bef9
 
 
072d8d2
350bef9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
05ef38f
350bef9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c3ab43a
 
 
 
 
 
 
 
 
 
 
 
 
 
350bef9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c3ab43a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
350bef9
 
05ef38f
350bef9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
072d8d2
350bef9
 
 
05ef38f
 
 
 
350bef9
 
 
 
 
 
 
 
 
 
 
 
 
 
072d8d2
350bef9
 
 
 
 
 
 
dbf5021
 
05ef38f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
import gradio as gr
import numpy as np
import time
import math
import random
import torch
import spaces

from diffusers import StableDiffusionXLInpaintPipeline
from PIL import Image, ImageFilter

max_64_bit_int = 2**63 - 1

DESCRIPTION="""
        <h1 style="text-align: center;">Outpainting demo</h1>
        <p style="text-align: center;">This uses code by Fabrice TIERCELIN</p>
        <br/>
        <a href='https://huggingface.co/spaces/clinteroni/outpainting-with-differential-diffusion-demo?duplicate=true'><img src='https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14'></a>
        <br/>
"""

if torch.cuda.is_available():
    device = "cuda"
    floatType = torch.float16
    variant = "fp16"
else:
    device = "cpu"
    floatType = torch.float32
    variant = None

DESCRIPTION+=f"<p>Running on {device}</p>"

pipe = StableDiffusionXLInpaintPipeline.from_pretrained("diffusers/stable-diffusion-xl-1.0-inpainting-0.1", torch_dtype = floatType, variant = variant)
pipe = pipe.to(device)

def update_seed(is_randomize_seed, seed):
    if is_randomize_seed:
        return random.randint(0, max_64_bit_int)
    return seed

def toggle_debug(is_debug_mode):
    return [gr.update(visible = is_debug_mode)] * 3

def noise_color(color, noise):
    return color + random.randint(- noise, noise)

def check(
    input_image,
    enlarge_top,
    enlarge_right,
    enlarge_bottom,
    enlarge_left,
    prompt,
    negative_prompt,
    smooth_border,
    num_inference_steps,
    guidance_scale,
    image_guidance_scale,
    strength,
    denoising_steps,
    is_randomize_seed,
    seed,
    debug_mode,
    progress = gr.Progress()):
    if input_image is None:
        raise gr.Error("Please provide an image.")

    if prompt is None or prompt == "":
        raise gr.Error("Please provide a prompt input.")

    if (not (enlarge_top is None)) and enlarge_top < 0:
        raise gr.Error("Please provide positive top margin.")

    if (not (enlarge_right is None)) and enlarge_right < 0:
        raise gr.Error("Please provide positive right margin.")

    if (not (enlarge_bottom is None)) and enlarge_bottom < 0:
        raise gr.Error("Please provide positive bottom margin.")

    if (not (enlarge_left is None)) and enlarge_left < 0:
        raise gr.Error("Please provide positive left margin.")

    if (
        (enlarge_top is None or enlarge_top == 0)
        and (enlarge_right is None or enlarge_right == 0)
        and (enlarge_bottom is None or enlarge_bottom == 0)
        and (enlarge_left is None or enlarge_left == 0)
    ):
        raise gr.Error("At least one border must be enlarged.")

def uncrop(
    input_image,
    enlarge_top,
    enlarge_right,
    enlarge_bottom,
    enlarge_left,
    prompt,
    negative_prompt,
    smooth_border,
    num_inference_steps,
    guidance_scale,
    image_guidance_scale,
    strength,
    denoising_steps,
    is_randomize_seed,
    seed,
    debug_mode,
    progress = gr.Progress()):
    check(
        input_image,
        enlarge_top,
        enlarge_right,
        enlarge_bottom,
        enlarge_left,
        prompt,
        negative_prompt,
        smooth_border,
        num_inference_steps,
        guidance_scale,
        image_guidance_scale,
        strength,
        denoising_steps,
        is_randomize_seed,
        seed,
        debug_mode
    )
    start = time.time()
    progress(0, desc = "Preparing data...")

    if enlarge_top is None or enlarge_top == "":
        enlarge_top = 0

    if enlarge_right is None or enlarge_right == "":
        enlarge_right = 0

    if enlarge_bottom is None or enlarge_bottom == "":
        enlarge_bottom = 0

    if enlarge_left is None or enlarge_left == "":
        enlarge_left = 0

    if negative_prompt is None:
        negative_prompt = ""

    if smooth_border is None:
        smooth_border = 0

    if num_inference_steps is None:
        num_inference_steps = 50

    if guidance_scale is None:
        guidance_scale = 7

    if image_guidance_scale is None:
        image_guidance_scale = 1.5

    if strength is None:
        strength = 0.99

    if denoising_steps is None:
        denoising_steps = 1000

    if seed is None:
        seed = random.randint(0, max_64_bit_int)

    random.seed(seed)
    torch.manual_seed(seed)

    original_height, original_width, original_channel = np.array(input_image).shape
    output_width = enlarge_left + original_width + enlarge_right
    output_height = enlarge_top + original_height + enlarge_bottom

    # Enlarged image
    enlarged_image = Image.new(mode = input_image.mode, size = (original_width, original_height), color = "black")
    enlarged_image.paste(input_image, (0, 0))
    enlarged_image = enlarged_image.resize((output_width, output_height))
    enlarged_image = enlarged_image.filter(ImageFilter.BoxBlur(20))

    enlarged_image.paste(input_image, (enlarge_left, enlarge_top))

    horizontally_mirrored_input_image = input_image.transpose(Image.FLIP_LEFT_RIGHT).resize((original_width * 2, original_height))
    enlarged_image.paste(horizontally_mirrored_input_image, (enlarge_left - (original_width * 2), enlarge_top))
    enlarged_image.paste(horizontally_mirrored_input_image, (enlarge_left + original_width, enlarge_top))

    vertically_mirrored_input_image = input_image.transpose(Image.FLIP_TOP_BOTTOM).resize((original_width, original_height * 2))
    enlarged_image.paste(vertically_mirrored_input_image, (enlarge_left, enlarge_top - (original_height * 2)))
    enlarged_image.paste(vertically_mirrored_input_image, (enlarge_left, enlarge_top + original_height))

    returned_input_image = input_image.transpose(Image.ROTATE_180).resize((original_width * 2, original_height * 2))
    enlarged_image.paste(returned_input_image, (enlarge_left - (original_width * 2), enlarge_top - (original_height * 2)))
    enlarged_image.paste(returned_input_image, (enlarge_left - (original_width * 2), enlarge_top + original_height))
    enlarged_image.paste(returned_input_image, (enlarge_left + original_width, enlarge_top - (original_height * 2)))
    enlarged_image.paste(returned_input_image, (enlarge_left + original_width, enlarge_top + original_height))

    enlarged_image = enlarged_image.filter(ImageFilter.BoxBlur(20))

    # Noise image
    noise_image = Image.new(mode = input_image.mode, size = (output_width, output_height), color = "black")
    enlarged_pixels = enlarged_image.load()

    for i in range(output_width):
        for j in range(output_height):
            enlarged_pixel = enlarged_pixels[i, j]
            noise = min(max(enlarge_left - i, i - (enlarge_left + original_width), enlarge_top - j, j - (enlarge_top + original_height), 0), 255)
            noise_image.putpixel((i, j), (noise_color(enlarged_pixel[0], noise), noise_color(enlarged_pixel[1], noise), noise_color(enlarged_pixel[2], noise), 255))

    enlarged_image.paste(noise_image, (0, 0))
    enlarged_image.paste(input_image, (enlarge_left, enlarge_top))

    # Mask
    mask_image = Image.new(mode = input_image.mode, size = (output_width, output_height), color = (255, 255, 255, 0))
    black_mask = Image.new(mode = input_image.mode, size = (original_width - smooth_border, original_height - smooth_border), color = (0, 0, 0, 0))
    mask_image.paste(black_mask, (enlarge_left + (smooth_border // 2), enlarge_top + (smooth_border // 2)))
    mask_image = mask_image.filter(ImageFilter.BoxBlur((smooth_border // 2)))

    # Limited to 1 million pixels
    if 1024 * 1024 < output_width * output_height:
        factor = ((1024 * 1024) / (output_width * output_height))**0.5
        process_width = math.floor(output_width * factor)
        process_height = math.floor(output_height * factor)

        limitation = " Due to technical limitations, the image has been downscaled and then upscaled.";
    else:
        process_width = output_width
        process_height = output_height

        limitation = "";

    # Width and height must be multiple of 8
    if (process_width % 8) != 0 or (process_height % 8) != 0:
        if ((process_width - (process_width % 8) + 8) * (process_height - (process_height % 8) + 8)) <= (1024 * 1024):
            process_width = process_width - (process_width % 8) + 8
            process_height = process_height - (process_height % 8) + 8
        elif (process_height % 8) <= (process_width % 8) and ((process_width - (process_width % 8) + 8) * process_height) <= (1024 * 1024):
            process_width = process_width - (process_width % 8) + 8
            process_height = process_height - (process_height % 8)
        elif (process_width % 8) <= (process_height % 8) and (process_width * (process_height - (process_height % 8) + 8)) <= (1024 * 1024):
            process_width = process_width - (process_width % 8)
            process_height = process_height - (process_height % 8) + 8
        else:
            process_width = process_width - (process_width % 8)
            process_height = process_height - (process_height % 8)

    progress(None, desc = "Processing...")

    output_image = uncrop_on_gpu(
        seed,
        process_width,
        process_height,
        prompt,
        negative_prompt,
        enlarged_image,
        mask_image,
        num_inference_steps,
        guidance_scale,
        image_guidance_scale,
        strength,
        denoising_steps
    )

    if limitation != "":
        output_image = output_image.resize((output_width, output_height))

    if debug_mode == False:
        input_image = None
        enlarged_image = None
        mask_image = None

    end = time.time()
    secondes = int(end - start)
    minutes = math.floor(secondes / 60)
    secondes = secondes - (minutes * 60)
    hours = math.floor(minutes / 60)
    minutes = minutes - (hours * 60)
    return [
        output_image,
        ("Start again to get a different result. " if is_randomize_seed else "") + "The new image is " + str(output_width) + " pixels large and " + str(output_height) + " pixels high, so an image of " + f'{output_width * output_height:,}' + " pixels. The image has been generated in " + ((str(hours) + " h, ") if hours != 0 else "") + ((str(minutes) + " min, ") if hours != 0 or minutes != 0 else "") + str(secondes) + " sec." + limitation,
        input_image,
        enlarged_image,
        mask_image
    ]

@spaces.GPU(duration=120)
def uncrop_on_gpu(
        seed,
        process_width,
        process_height,
        prompt,
        negative_prompt,
        enlarged_image,
        mask_image,
        num_inference_steps,
        guidance_scale,
        image_guidance_scale,
        strength,
        denoising_steps
):
    return pipe(
        seeds = [seed],
        width = process_width,
        height = process_height,
        prompt = prompt,
        negative_prompt = negative_prompt,
        image = enlarged_image,
        mask_image = mask_image,
        num_inference_steps = num_inference_steps,
        guidance_scale = guidance_scale,
        image_guidance_scale = image_guidance_scale,
        strength = strength,
        denoising_steps = denoising_steps,
        show_progress_bar = True
    ).images[0]

with gr.Blocks() as interface:
    gr.HTML(
            DESCRIPTION
    )
    with gr.Row():
        with gr.Column():
            dummy_1 = gr.Label(visible = False)
        with gr.Column():
            enlarge_top = gr.Number(minimum = 0, value = 64, precision = 0, label = "Uncrop on top ⬆️", info = "in pixels")
        with gr.Column():
            dummy_2 = gr.Label(visible = False)
    with gr.Row():
        with gr.Column():
            enlarge_left = gr.Number(minimum = 0, value = 64, precision = 0, label = "Uncrop on left ⬅️", info = "in pixels")
        with gr.Column():
            input_image = gr.Image(label = "Your image", sources = ["upload", "webcam", "clipboard"], type = "pil")
        with gr.Column():
            enlarge_right = gr.Number(minimum = 0, value = 64, precision = 0, label = "Uncrop on right ➡️", info = "in pixels")
    with gr.Row():
        with gr.Column():
            dummy_3 = gr.Label(visible = False)
        with gr.Column():
            enlarge_bottom = gr.Number(minimum = 0, value = 64, precision = 0, label = "Uncrop on bottom ⬇️", info = "in pixels")
        with gr.Column():
            dummy_4 = gr.Label(visible = False)
    with gr.Row():
        prompt = gr.Textbox(label = "Prompt", info = "Describe the subject, the background and the style of image; 77 token limit", placeholder = "Describe what you want to see in the entire image", lines = 2)
    with gr.Row():
        with gr.Accordion("Advanced options", open = False):
            negative_prompt = gr.Textbox(label = "Negative prompt", placeholder = "Describe what you do NOT want to see in the entire image", value = 'Border, frame, painting, scribbling, smear, noise, blur, watermark')
            smooth_border = gr.Slider(minimum = 0, maximum = 1024, value = 0, step = 2, label = "Smooth border", info = "lower=preserve original, higher=seamless")
            num_inference_steps = gr.Slider(minimum = 10, maximum = 100, value = 50, step = 1, label = "Number of inference steps", info = "lower=faster, higher=image quality")
            guidance_scale = gr.Slider(minimum = 1, maximum = 13, value = 7, step = 0.1, label = "Classifier-Free Guidance Scale", info = "lower=image quality, higher=follow the prompt")
            image_guidance_scale = gr.Slider(minimum = 1, value = 1.5, step = 0.1, label = "Image Guidance Scale", info = "lower=image quality, higher=follow the image")
            strength = gr.Slider(value = 0.99, minimum = 0.01, maximum = 1.0, step = 0.01, label = "Strength", info = "lower=follow the original area (discouraged), higher=redraw from scratch")
            denoising_steps = gr.Number(minimum = 0, value = 1000, step = 1, label = "Denoising", info = "lower=irrelevant result, higher=relevant result")
            randomize_seed = gr.Checkbox(label = "\U0001F3B2 Randomize seed", value = True, info = "If checked, result is always different")
            seed = gr.Slider(minimum = 0, maximum = max_64_bit_int, step = 1, randomize = True, label = "Seed")
            debug_mode = gr.Checkbox(label = "Debug mode", value = False, info = "Show intermediate results")

    with gr.Row():
        submit = gr.Button("🚀 Outpaint", variant = "primary")

    with gr.Row():
        uncropped_image = gr.Image(label = "Outpainted image")
    with gr.Row():
        information = gr.HTML()
    with gr.Row():
        original_image = gr.Image(label = "Original image", visible = False)
    with gr.Row():
        enlarged_image = gr.Image(label = "Enlarged image", visible = False)
    with gr.Row():
        mask_image = gr.Image(label = "Mask image", visible = False)

    submit.click(fn = update_seed, inputs = [
        randomize_seed,
        seed
    ], outputs = [
        seed
    ], queue = False, show_progress = False).then(toggle_debug, debug_mode, [
        original_image,
        enlarged_image,
        mask_image
    ], queue = False, show_progress = False).then(check, inputs = [
        input_image,
        enlarge_top,
        enlarge_right,
        enlarge_bottom,
        enlarge_left,
        prompt,
        negative_prompt,
        smooth_border,
        num_inference_steps,
        guidance_scale,
        image_guidance_scale,
        strength,
        denoising_steps,
        randomize_seed,
        seed,
        debug_mode
    ], outputs = [], queue = False,
                     show_progress = False).success(uncrop, inputs = [
        input_image,
        enlarge_top,
        enlarge_right,
        enlarge_bottom,
        enlarge_left,
        prompt,
        negative_prompt,
        smooth_border,
        num_inference_steps,
        guidance_scale,
        image_guidance_scale,
        strength,
        denoising_steps,
        randomize_seed,
        seed,
        debug_mode
    ], outputs = [
        uncropped_image,
        information,
        original_image,
        enlarged_image,
        mask_image
    ], scroll_to_output = True)

    gr.Examples(
        run_on_click = True,
        fn = uncrop,
	    inputs = [
            input_image,
            enlarge_top,
            enlarge_right,
            enlarge_bottom,
            enlarge_left,
            prompt,
            negative_prompt,
            smooth_border,
            num_inference_steps,
            guidance_scale,
            image_guidance_scale,
            strength,
            denoising_steps,
            randomize_seed,
            seed,
            debug_mode
        ],
	    outputs = [
            uncropped_image,
            information,
            original_image,
            enlarged_image,
            mask_image
        ],
        examples = [
                [
                    "./examples/Coucang.jpg",
                    417,
                    0,
                    417,
                    0,
                    "A white Coucang, in a tree, ultrarealistic, realistic, photorealistic, 8k, bokeh",
                    "Border, frame, painting, drawing, cartoon, anime, 3d, scribbling, smear, noise, blur, watermark",
                    0,
                    50,
                    7,
                    1.5,
                    0.99,
                    1000,
                    False,
                    123,
                    False
                ],
            ],
        cache_examples = False,
    )
    
    gr.Markdown(
        """
        ## Credit
        The [example image](https://commons.wikimedia.org/wiki/File:Coucang.jpg) is by Aprisonsan
        and licensed under CC-BY-SA 4.0 International.
        """
    )

    interface.queue().launch()