clinteroni's picture
Optimize the GPU use (#3)
5606e2d verified
import gradio as gr
import numpy as np
import time
import math
import random
import torch
import spaces
from diffusers import StableDiffusionXLInpaintPipeline
from PIL import Image, ImageFilter
max_64_bit_int = 2**63 - 1
DESCRIPTION="""
<h1 style="text-align: center;">Outpainting demo</h1>
<p style="text-align: center;">This uses code by Fabrice TIERCELIN</p>
<br/>
<a href='https://huggingface.co/spaces/clinteroni/outpainting-with-differential-diffusion-demo?duplicate=true'><img src='https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14'></a>
<br/>
"""
if torch.cuda.is_available():
device = "cuda"
floatType = torch.float16
variant = "fp16"
else:
device = "cpu"
floatType = torch.float32
variant = None
DESCRIPTION+=f"<p>Running on {device}</p>"
pipe = StableDiffusionXLInpaintPipeline.from_pretrained("diffusers/stable-diffusion-xl-1.0-inpainting-0.1", torch_dtype = floatType, variant = variant)
pipe = pipe.to(device)
def update_seed(is_randomize_seed, seed):
if is_randomize_seed:
return random.randint(0, max_64_bit_int)
return seed
def toggle_debug(is_debug_mode):
return [gr.update(visible = is_debug_mode)] * 3
def noise_color(color, noise):
return color + random.randint(- noise, noise)
def check(
input_image,
enlarge_top,
enlarge_right,
enlarge_bottom,
enlarge_left,
prompt,
negative_prompt,
smooth_border,
num_inference_steps,
guidance_scale,
image_guidance_scale,
strength,
denoising_steps,
is_randomize_seed,
seed,
debug_mode,
progress = gr.Progress()):
if input_image is None:
raise gr.Error("Please provide an image.")
if prompt is None or prompt == "":
raise gr.Error("Please provide a prompt input.")
if (not (enlarge_top is None)) and enlarge_top < 0:
raise gr.Error("Please provide positive top margin.")
if (not (enlarge_right is None)) and enlarge_right < 0:
raise gr.Error("Please provide positive right margin.")
if (not (enlarge_bottom is None)) and enlarge_bottom < 0:
raise gr.Error("Please provide positive bottom margin.")
if (not (enlarge_left is None)) and enlarge_left < 0:
raise gr.Error("Please provide positive left margin.")
if (
(enlarge_top is None or enlarge_top == 0)
and (enlarge_right is None or enlarge_right == 0)
and (enlarge_bottom is None or enlarge_bottom == 0)
and (enlarge_left is None or enlarge_left == 0)
):
raise gr.Error("At least one border must be enlarged.")
def uncrop(
input_image,
enlarge_top,
enlarge_right,
enlarge_bottom,
enlarge_left,
prompt,
negative_prompt,
smooth_border,
num_inference_steps,
guidance_scale,
image_guidance_scale,
strength,
denoising_steps,
is_randomize_seed,
seed,
debug_mode,
progress = gr.Progress()):
check(
input_image,
enlarge_top,
enlarge_right,
enlarge_bottom,
enlarge_left,
prompt,
negative_prompt,
smooth_border,
num_inference_steps,
guidance_scale,
image_guidance_scale,
strength,
denoising_steps,
is_randomize_seed,
seed,
debug_mode
)
start = time.time()
progress(0, desc = "Preparing data...")
if enlarge_top is None or enlarge_top == "":
enlarge_top = 0
if enlarge_right is None or enlarge_right == "":
enlarge_right = 0
if enlarge_bottom is None or enlarge_bottom == "":
enlarge_bottom = 0
if enlarge_left is None or enlarge_left == "":
enlarge_left = 0
if negative_prompt is None:
negative_prompt = ""
if smooth_border is None:
smooth_border = 0
if num_inference_steps is None:
num_inference_steps = 50
if guidance_scale is None:
guidance_scale = 7
if image_guidance_scale is None:
image_guidance_scale = 1.5
if strength is None:
strength = 0.99
if denoising_steps is None:
denoising_steps = 1000
if seed is None:
seed = random.randint(0, max_64_bit_int)
random.seed(seed)
torch.manual_seed(seed)
original_height, original_width, original_channel = np.array(input_image).shape
output_width = enlarge_left + original_width + enlarge_right
output_height = enlarge_top + original_height + enlarge_bottom
# Enlarged image
enlarged_image = Image.new(mode = input_image.mode, size = (original_width, original_height), color = "black")
enlarged_image.paste(input_image, (0, 0))
enlarged_image = enlarged_image.resize((output_width, output_height))
enlarged_image = enlarged_image.filter(ImageFilter.BoxBlur(20))
enlarged_image.paste(input_image, (enlarge_left, enlarge_top))
horizontally_mirrored_input_image = input_image.transpose(Image.FLIP_LEFT_RIGHT).resize((original_width * 2, original_height))
enlarged_image.paste(horizontally_mirrored_input_image, (enlarge_left - (original_width * 2), enlarge_top))
enlarged_image.paste(horizontally_mirrored_input_image, (enlarge_left + original_width, enlarge_top))
vertically_mirrored_input_image = input_image.transpose(Image.FLIP_TOP_BOTTOM).resize((original_width, original_height * 2))
enlarged_image.paste(vertically_mirrored_input_image, (enlarge_left, enlarge_top - (original_height * 2)))
enlarged_image.paste(vertically_mirrored_input_image, (enlarge_left, enlarge_top + original_height))
returned_input_image = input_image.transpose(Image.ROTATE_180).resize((original_width * 2, original_height * 2))
enlarged_image.paste(returned_input_image, (enlarge_left - (original_width * 2), enlarge_top - (original_height * 2)))
enlarged_image.paste(returned_input_image, (enlarge_left - (original_width * 2), enlarge_top + original_height))
enlarged_image.paste(returned_input_image, (enlarge_left + original_width, enlarge_top - (original_height * 2)))
enlarged_image.paste(returned_input_image, (enlarge_left + original_width, enlarge_top + original_height))
enlarged_image = enlarged_image.filter(ImageFilter.BoxBlur(20))
# Noise image
noise_image = Image.new(mode = input_image.mode, size = (output_width, output_height), color = "black")
enlarged_pixels = enlarged_image.load()
for i in range(output_width):
for j in range(output_height):
enlarged_pixel = enlarged_pixels[i, j]
noise = min(max(enlarge_left - i, i - (enlarge_left + original_width), enlarge_top - j, j - (enlarge_top + original_height), 0), 255)
noise_image.putpixel((i, j), (noise_color(enlarged_pixel[0], noise), noise_color(enlarged_pixel[1], noise), noise_color(enlarged_pixel[2], noise), 255))
enlarged_image.paste(noise_image, (0, 0))
enlarged_image.paste(input_image, (enlarge_left, enlarge_top))
# Mask
mask_image = Image.new(mode = input_image.mode, size = (output_width, output_height), color = (255, 255, 255, 0))
black_mask = Image.new(mode = input_image.mode, size = (original_width - smooth_border, original_height - smooth_border), color = (0, 0, 0, 0))
mask_image.paste(black_mask, (enlarge_left + (smooth_border // 2), enlarge_top + (smooth_border // 2)))
mask_image = mask_image.filter(ImageFilter.BoxBlur((smooth_border // 2)))
# Limited to 1 million pixels
if 1024 * 1024 < output_width * output_height:
factor = ((1024 * 1024) / (output_width * output_height))**0.5
process_width = math.floor(output_width * factor)
process_height = math.floor(output_height * factor)
limitation = " Due to technical limitations, the image has been downscaled and then upscaled.";
else:
process_width = output_width
process_height = output_height
limitation = "";
# Width and height must be multiple of 8
if (process_width % 8) != 0 or (process_height % 8) != 0:
if ((process_width - (process_width % 8) + 8) * (process_height - (process_height % 8) + 8)) <= (1024 * 1024):
process_width = process_width - (process_width % 8) + 8
process_height = process_height - (process_height % 8) + 8
elif (process_height % 8) <= (process_width % 8) and ((process_width - (process_width % 8) + 8) * process_height) <= (1024 * 1024):
process_width = process_width - (process_width % 8) + 8
process_height = process_height - (process_height % 8)
elif (process_width % 8) <= (process_height % 8) and (process_width * (process_height - (process_height % 8) + 8)) <= (1024 * 1024):
process_width = process_width - (process_width % 8)
process_height = process_height - (process_height % 8) + 8
else:
process_width = process_width - (process_width % 8)
process_height = process_height - (process_height % 8)
progress(None, desc = "Processing...")
output_image = uncrop_on_gpu(
seed,
process_width,
process_height,
prompt,
negative_prompt,
enlarged_image,
mask_image,
num_inference_steps,
guidance_scale,
image_guidance_scale,
strength,
denoising_steps
)
if limitation != "":
output_image = output_image.resize((output_width, output_height))
if debug_mode == False:
input_image = None
enlarged_image = None
mask_image = None
end = time.time()
secondes = int(end - start)
minutes = math.floor(secondes / 60)
secondes = secondes - (minutes * 60)
hours = math.floor(minutes / 60)
minutes = minutes - (hours * 60)
return [
output_image,
("Start again to get a different result. " if is_randomize_seed else "") + "The new image is " + str(output_width) + " pixels large and " + str(output_height) + " pixels high, so an image of " + f'{output_width * output_height:,}' + " pixels. The image has been generated in " + ((str(hours) + " h, ") if hours != 0 else "") + ((str(minutes) + " min, ") if hours != 0 or minutes != 0 else "") + str(secondes) + " sec." + limitation,
input_image,
enlarged_image,
mask_image
]
@spaces.GPU(duration=120)
def uncrop_on_gpu(
seed,
process_width,
process_height,
prompt,
negative_prompt,
enlarged_image,
mask_image,
num_inference_steps,
guidance_scale,
image_guidance_scale,
strength,
denoising_steps
):
return pipe(
seeds = [seed],
width = process_width,
height = process_height,
prompt = prompt,
negative_prompt = negative_prompt,
image = enlarged_image,
mask_image = mask_image,
num_inference_steps = num_inference_steps,
guidance_scale = guidance_scale,
image_guidance_scale = image_guidance_scale,
strength = strength,
denoising_steps = denoising_steps,
show_progress_bar = True
).images[0]
with gr.Blocks() as interface:
gr.HTML(
DESCRIPTION
)
with gr.Row():
with gr.Column():
dummy_1 = gr.Label(visible = False)
with gr.Column():
enlarge_top = gr.Number(minimum = 0, value = 64, precision = 0, label = "Uncrop on top ⬆️", info = "in pixels")
with gr.Column():
dummy_2 = gr.Label(visible = False)
with gr.Row():
with gr.Column():
enlarge_left = gr.Number(minimum = 0, value = 64, precision = 0, label = "Uncrop on left ⬅️", info = "in pixels")
with gr.Column():
input_image = gr.Image(label = "Your image", sources = ["upload", "webcam", "clipboard"], type = "pil")
with gr.Column():
enlarge_right = gr.Number(minimum = 0, value = 64, precision = 0, label = "Uncrop on right ➡️", info = "in pixels")
with gr.Row():
with gr.Column():
dummy_3 = gr.Label(visible = False)
with gr.Column():
enlarge_bottom = gr.Number(minimum = 0, value = 64, precision = 0, label = "Uncrop on bottom ⬇️", info = "in pixels")
with gr.Column():
dummy_4 = gr.Label(visible = False)
with gr.Row():
prompt = gr.Textbox(label = "Prompt", info = "Describe the subject, the background and the style of image; 77 token limit", placeholder = "Describe what you want to see in the entire image", lines = 2)
with gr.Row():
with gr.Accordion("Advanced options", open = False):
negative_prompt = gr.Textbox(label = "Negative prompt", placeholder = "Describe what you do NOT want to see in the entire image", value = 'Border, frame, painting, scribbling, smear, noise, blur, watermark')
smooth_border = gr.Slider(minimum = 0, maximum = 1024, value = 0, step = 2, label = "Smooth border", info = "lower=preserve original, higher=seamless")
num_inference_steps = gr.Slider(minimum = 10, maximum = 100, value = 50, step = 1, label = "Number of inference steps", info = "lower=faster, higher=image quality")
guidance_scale = gr.Slider(minimum = 1, maximum = 13, value = 7, step = 0.1, label = "Classifier-Free Guidance Scale", info = "lower=image quality, higher=follow the prompt")
image_guidance_scale = gr.Slider(minimum = 1, value = 1.5, step = 0.1, label = "Image Guidance Scale", info = "lower=image quality, higher=follow the image")
strength = gr.Slider(value = 0.99, minimum = 0.01, maximum = 1.0, step = 0.01, label = "Strength", info = "lower=follow the original area (discouraged), higher=redraw from scratch")
denoising_steps = gr.Number(minimum = 0, value = 1000, step = 1, label = "Denoising", info = "lower=irrelevant result, higher=relevant result")
randomize_seed = gr.Checkbox(label = "\U0001F3B2 Randomize seed", value = True, info = "If checked, result is always different")
seed = gr.Slider(minimum = 0, maximum = max_64_bit_int, step = 1, randomize = True, label = "Seed")
debug_mode = gr.Checkbox(label = "Debug mode", value = False, info = "Show intermediate results")
with gr.Row():
submit = gr.Button("🚀 Outpaint", variant = "primary")
with gr.Row():
uncropped_image = gr.Image(label = "Outpainted image")
with gr.Row():
information = gr.HTML()
with gr.Row():
original_image = gr.Image(label = "Original image", visible = False)
with gr.Row():
enlarged_image = gr.Image(label = "Enlarged image", visible = False)
with gr.Row():
mask_image = gr.Image(label = "Mask image", visible = False)
submit.click(fn = update_seed, inputs = [
randomize_seed,
seed
], outputs = [
seed
], queue = False, show_progress = False).then(toggle_debug, debug_mode, [
original_image,
enlarged_image,
mask_image
], queue = False, show_progress = False).then(check, inputs = [
input_image,
enlarge_top,
enlarge_right,
enlarge_bottom,
enlarge_left,
prompt,
negative_prompt,
smooth_border,
num_inference_steps,
guidance_scale,
image_guidance_scale,
strength,
denoising_steps,
randomize_seed,
seed,
debug_mode
], outputs = [], queue = False,
show_progress = False).success(uncrop, inputs = [
input_image,
enlarge_top,
enlarge_right,
enlarge_bottom,
enlarge_left,
prompt,
negative_prompt,
smooth_border,
num_inference_steps,
guidance_scale,
image_guidance_scale,
strength,
denoising_steps,
randomize_seed,
seed,
debug_mode
], outputs = [
uncropped_image,
information,
original_image,
enlarged_image,
mask_image
], scroll_to_output = True)
gr.Examples(
run_on_click = True,
fn = uncrop,
inputs = [
input_image,
enlarge_top,
enlarge_right,
enlarge_bottom,
enlarge_left,
prompt,
negative_prompt,
smooth_border,
num_inference_steps,
guidance_scale,
image_guidance_scale,
strength,
denoising_steps,
randomize_seed,
seed,
debug_mode
],
outputs = [
uncropped_image,
information,
original_image,
enlarged_image,
mask_image
],
examples = [
[
"./examples/Coucang.jpg",
417,
0,
417,
0,
"A white Coucang, in a tree, ultrarealistic, realistic, photorealistic, 8k, bokeh",
"Border, frame, painting, drawing, cartoon, anime, 3d, scribbling, smear, noise, blur, watermark",
0,
50,
7,
1.5,
0.99,
1000,
False,
123,
False
],
],
cache_examples = False,
)
gr.Markdown(
"""
## Credit
The [example image](https://commons.wikimedia.org/wiki/File:Coucang.jpg) is by Aprisonsan
and licensed under CC-BY-SA 4.0 International.
"""
)
interface.queue().launch()