import os from dotenv import load_dotenv import gradio as gr from langchain_huggingface import HuggingFaceEndpoint # Load environment variables load_dotenv() HF_TOKEN = os.getenv("HF_TOKEN") # Initialize the Hugging Face endpoint llm = HuggingFaceEndpoint( repo_id="mistralai/Mistral-7B-Instruct-v0.3", # Replace with the desired Hugging Face model huggingfacehub_api_token=HF_TOKEN.strip(), temperature=0.7, max_new_tokens=300 ) # Recipe generation function def suggest_recipes(ingredients): prompt = ( f"You are an expert chef. Please suggest 3 unique recipes using the following " f"ingredients: {ingredients}. Provide a title for each recipe, include " f"preparation time, and list step-by-step directions." ) try: response = llm(prompt) # Format response into multiple recipes generated_text = response.content recipes = generated_text.split("Recipe") structured_recipes = [] for i, recipe in enumerate(recipes): if recipe.strip(): # Ensure non-empty recipe structured_recipes.append(f"Recipe {i+1}:\n{recipe.strip()}") return "\n\n".join(structured_recipes) except Exception as e: return f"Error: {e}" # Gradio interface with gr.Blocks() as app: gr.Markdown("# AI Recipe Generator") gr.Markdown("Enter the ingredients you have, and this app will generate 3 unique recipes along with preparation times!") with gr.Row(): ingredients_input = gr.Textbox( label="Enter Ingredients (comma-separated):", placeholder="e.g., eggs, milk, flour" ) recipe_output = gr.Textbox(label="Suggested Recipes:", lines=15, interactive=False) generate_button = gr.Button("Get Recipes") generate_button.click(suggest_recipes, inputs=ingredients_input, outputs=recipe_output) # Launch the app app.launch()