Spaces:
Sleeping
Sleeping
import PyPDF2 | |
from docx import Document | |
from pptx import Presentation | |
from nlp import get_average_similarity_scores | |
import numpy as np | |
import plotly.graph_objects as go | |
import os | |
import tempfile | |
import shutil | |
# Langchain document loaders | |
from langchain.document_loaders import PyPDFLoader #for pdf files | |
from langchain.document_loaders import TextLoader #for text files | |
from langchain.document_loaders import Docx2txtLoader #for docx files | |
from langchain.document_loaders import UnstructuredPowerPointLoader #for pptx files | |
from constants import StreamlitException | |
from PyPDF2.errors import PdfReadError | |
from zipfile import BadZipFile | |
def load_file(st, uploaded_file): | |
# uploaded_file is the output of st.sidebar.file_uploader | |
file_type = uploaded_file.type | |
try: | |
os.mkdir('downloaded_files') | |
except FileExistsError: | |
pass | |
download_path = os.path.join('downloaded_files', uploaded_file.name) | |
with tempfile.NamedTemporaryFile(delete=False) as tmp_file: | |
# Write the contents of the uploaded file to the temporary file | |
tmp_file.write(uploaded_file.read()) | |
tmp_file.flush() | |
shutil.copy(tmp_file.name, download_path) | |
try: | |
if file_type == "application/pdf": | |
resume_text_raw = extract_pdf_text(uploaded_file) | |
lang_loader = PyPDFLoader(download_path) | |
elif file_type == "application/vnd.openxmlformats-officedocument.wordprocessingml.document": | |
resume_text_raw = extract_word_text(uploaded_file) | |
lang_loader = Docx2txtLoader(download_path) | |
elif file_type == "application/vnd.ms-powerpoint" or file_type == "application/vnd.openxmlformats-officedocument.presentationml.presentation": | |
resume_text_raw = extract_ppt_text(uploaded_file) | |
lang_loader = UnstructuredPowerPointLoader(download_path) | |
else: | |
return StreamlitException("**Error**: Invalid file format. Please upload a Word, PDF, or PowerPoint file.") | |
except (PdfReadError, BadZipFile): | |
return StreamlitException("**Error**: Invalid file content. Please upload a valid Word, PDF, or PowerPoint file.") | |
return resume_text_raw, lang_loader | |
# Function to extract text from a PDF file | |
def extract_pdf_text(file): | |
pdf_reader = PyPDF2.PdfReader(file) | |
text = "" | |
for page in pdf_reader.pages: | |
lines = page.extract_text().split('\n') | |
for line in lines: | |
text += line.strip() + ".\n" | |
return text | |
# Function to extract text from a Word file | |
def extract_word_text(file): | |
doc = Document(file) | |
text = '' | |
p_iter = iter(doc.paragraphs) | |
t_iter = iter(doc.tables) | |
while True: | |
try: | |
paragraph = next(p_iter) | |
text += paragraph.text + '.\n' | |
except StopIteration: | |
break | |
try: | |
table = next(t_iter) | |
for row in table.rows: | |
for cell in row.cells: | |
text += cell.text + '\t' | |
text += '\n' | |
except StopIteration: | |
pass | |
return text | |
# Function to extract text from a PowerPoint file | |
def extract_ppt_text(file): | |
prs = Presentation(file) | |
text = "" | |
for slide in prs.slides: | |
for shape in slide.shapes: | |
if shape.has_text_frame: | |
text += shape.text_frame.text | |
return text | |
# Function to plot the average similarity score for each job description phrase | |
def plot_similarity_scores(job_description_phrases, resume_phrases): | |
avg_similarity_scores = get_average_similarity_scores(job_description_phrases, resume_phrases) | |
sorted_scores = sorted(enumerate(avg_similarity_scores), key=lambda x: x[1], reverse=True)[:10] | |
indices = [i[0] for i in sorted_scores] | |
sorted_scores = [i[1] for i in sorted_scores] | |
y_pos = list(range(len(indices))) | |
fig = go.Figure() | |
fig.add_trace(go.Bar( | |
y=y_pos, | |
x=sorted_scores, | |
orientation='h' | |
)) | |
fig.update_layout( | |
yaxis=dict( | |
tickmode="array", | |
tickvals=y_pos, | |
ticktext=[s[:100].ljust(100) + '...' if len(s) > 100 else s.ljust(75) for s in np.array(job_description_phrases)[indices]], | |
tickfont=dict(size=14), | |
autorange="reversed", | |
side="right", | |
automargin=True | |
), | |
xaxis=dict( | |
tickmode="array", | |
tickvals=np.round(np.arange(0, 1.2, 0.2), 2), | |
ticktext=np.round(np.arange(0, 1.2, 0.2), 2), | |
tickfont=dict(size=14), | |
range=[0, 1.05] | |
), | |
showlegend=False, | |
margin=dict(t=0) | |
) | |
fig.update_xaxes(title="Average Similarity Score", title_font=dict(size=14)) | |
return fig |