ResuMate_NVIDIA / utils.py
cm0805's picture
Create utils.py
0a510f9
raw
history blame
4.77 kB
import PyPDF2
from docx import Document
from pptx import Presentation
from nlp import get_average_similarity_scores
import numpy as np
import plotly.graph_objects as go
import os
import tempfile
import shutil
# Langchain document loaders
from langchain.document_loaders import PyPDFLoader #for pdf files
from langchain.document_loaders import TextLoader #for text files
from langchain.document_loaders import Docx2txtLoader #for docx files
from langchain.document_loaders import UnstructuredPowerPointLoader #for pptx files
from constants import StreamlitException
from PyPDF2.errors import PdfReadError
from zipfile import BadZipFile
def load_file(st, uploaded_file):
# uploaded_file is the output of st.sidebar.file_uploader
file_type = uploaded_file.type
try:
os.mkdir('downloaded_files')
except FileExistsError:
pass
download_path = os.path.join('downloaded_files', uploaded_file.name)
with tempfile.NamedTemporaryFile(delete=False) as tmp_file:
# Write the contents of the uploaded file to the temporary file
tmp_file.write(uploaded_file.read())
tmp_file.flush()
shutil.copy(tmp_file.name, download_path)
try:
if file_type == "application/pdf":
resume_text_raw = extract_pdf_text(uploaded_file)
lang_loader = PyPDFLoader(download_path)
elif file_type == "application/vnd.openxmlformats-officedocument.wordprocessingml.document":
resume_text_raw = extract_word_text(uploaded_file)
lang_loader = Docx2txtLoader(download_path)
elif file_type == "application/vnd.ms-powerpoint" or file_type == "application/vnd.openxmlformats-officedocument.presentationml.presentation":
resume_text_raw = extract_ppt_text(uploaded_file)
lang_loader = UnstructuredPowerPointLoader(download_path)
else:
return StreamlitException("**Error**: Invalid file format. Please upload a Word, PDF, or PowerPoint file.")
except (PdfReadError, BadZipFile):
return StreamlitException("**Error**: Invalid file content. Please upload a valid Word, PDF, or PowerPoint file.")
return resume_text_raw, lang_loader
# Function to extract text from a PDF file
def extract_pdf_text(file):
pdf_reader = PyPDF2.PdfReader(file)
text = ""
for page in pdf_reader.pages:
lines = page.extract_text().split('\n')
for line in lines:
text += line.strip() + ".\n"
return text
# Function to extract text from a Word file
def extract_word_text(file):
doc = Document(file)
text = ''
p_iter = iter(doc.paragraphs)
t_iter = iter(doc.tables)
while True:
try:
paragraph = next(p_iter)
text += paragraph.text + '.\n'
except StopIteration:
break
try:
table = next(t_iter)
for row in table.rows:
for cell in row.cells:
text += cell.text + '\t'
text += '\n'
except StopIteration:
pass
return text
# Function to extract text from a PowerPoint file
def extract_ppt_text(file):
prs = Presentation(file)
text = ""
for slide in prs.slides:
for shape in slide.shapes:
if shape.has_text_frame:
text += shape.text_frame.text
return text
# Function to plot the average similarity score for each job description phrase
def plot_similarity_scores(job_description_phrases, resume_phrases):
avg_similarity_scores = get_average_similarity_scores(job_description_phrases, resume_phrases)
sorted_scores = sorted(enumerate(avg_similarity_scores), key=lambda x: x[1], reverse=True)[:10]
indices = [i[0] for i in sorted_scores]
sorted_scores = [i[1] for i in sorted_scores]
y_pos = list(range(len(indices)))
fig = go.Figure()
fig.add_trace(go.Bar(
y=y_pos,
x=sorted_scores,
orientation='h'
))
fig.update_layout(
yaxis=dict(
tickmode="array",
tickvals=y_pos,
ticktext=[s[:100].ljust(100) + '...' if len(s) > 100 else s.ljust(75) for s in np.array(job_description_phrases)[indices]],
tickfont=dict(size=14),
autorange="reversed",
side="right",
automargin=True
),
xaxis=dict(
tickmode="array",
tickvals=np.round(np.arange(0, 1.2, 0.2), 2),
ticktext=np.round(np.arange(0, 1.2, 0.2), 2),
tickfont=dict(size=14),
range=[0, 1.05]
),
showlegend=False,
margin=dict(t=0)
)
fig.update_xaxes(title="Average Similarity Score", title_font=dict(size=14))
return fig