Spaces:
Runtime error
Runtime error
File size: 3,666 Bytes
1880ac6 3ce130a 76d3fa1 1880ac6 76d3fa1 2600030 76d3fa1 1880ac6 3ce130a 1880ac6 3ce130a 1880ac6 3ce130a 1880ac6 3ce130a 1880ac6 3ce130a 76d3fa1 3ce130a 76d3fa1 1880ac6 76d3fa1 3ce130a 1880ac6 3ce130a 1880ac6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 |
from typing import List, Tuple
class Agent:
def __init__(self, name, background, goal, secrets, personality):
self.name = name
self.background = background
self.goal = goal
self.secrets = secrets
self.personality = personality
def get_starter_prompt(machine_agent, human_agent, scenario):
return f"Prompt after formatting:\nImagine you are {machine_agent.name}, your task is to act/speak as {machine_agent.name} would, keeping in mind {machine_agent.name}'s social goal.\nYou can find {machine_agent.name}'s background and goal in the 'Here is the context of the interaction' field.\nNote that {machine_agent.name}'s secret and goal is only visible to you.\nYou should try your best to achieve {machine_agent.name}'s goal in a way that align with their character traits.\nAdditionally, maintaining the conversation's naturalness and realism is essential (e.g., do not repeat what other people has already said before).\n\nHere is the context of this interaction:\n Scenario: {scenario}\nParticipants: {human_agent.name} and {machine_agent.name}\n{human_agent.name}'s background: {human_agent.background} Personality and values description: {human_agent.personality} \n{machine_agent.name}'s background: {machine_agent.background} Personality and values description: {machine_agent.personality} {machine_agent.name}'s secrets: {machine_agent.secrets}\n{human_agent.name}'s goal: Unknown\n{machine_agent.name}'s goal: {machine_agent.goal}\nConversation Starts:"
# we define history as
# [(user_message, bot_message), (user_message, bot_message)]
# we define dialogue history as
# user_name: user_message\nbot_name: bot_message\nuser_name: user_message\nbot_name: bot_message\n
def dialogue_history_length_check(string, max_token, tokenizer):
prompt_tokens = len(tokenizer(string)["input_ids"])
return max(prompt_tokens - max_token, 0)
def truncate_dialogue_history_to_length(dia_his, surpass_num, tokenizer):
dia_sen = dia_his.split("\n")
remove_len = 0
i = 0
while remove_len < surpass_num:
remove_len += len(tokenizer(dia_sen[i])["input_ids"])
i += 1
trunc_dia = "\n".join(p for p in dia_sen[i:])
return trunc_dia
def dialogue_history_creation(history, user_name, bot_name):
dialogue_history = ""
for idx, turn in enumerate(history):
user_message, bot_message = turn
# TODOTODO (haofeiyu): we first assume that human talks first
user_turn_idx = idx * 2
bot_turn_idx = idx * 2 + 1
dialogue_history = f"{dialogue_history}\n\nTurn #{user_turn_idx}: {user_name}: {user_message}\n\nTurn #{bot_turn_idx}: {bot_name}: {bot_message}"
last_turn_idx = len(history) * 2
return dialogue_history, last_turn_idx
def dialogue_history_truncation(dialogue_history, max_token_num, tokenizer):
surpass_num = dialogue_history_length_check(
dialogue_history, max_token_num, tokenizer
)
if surpass_num > 0:
dialogue_history = truncate_dialogue_history_to_length(
dialogue_history, surpass_num, tokenizer
)
return dialogue_history
def format_sotopia_prompt(
message: str,
history: List[Tuple[str, str]],
instructions: str,
user_name: str,
bot_name: str,
include_all_chat_history: bool = True,
index: int = 1,
) -> str:
prompt = instructions.strip()
dialogue_history, last_turn_idx = dialogue_history_creation(
history, user_name, bot_name
)
prompt = f"{prompt}\n{dialogue_history}"
prompt = f"{prompt}\n\nTurn #{last_turn_idx+1}: {user_name}: {message}\n.\nYou are at Turn #{last_turn_idx+2}."
return prompt
|