from typing import List, Tuple class Agent: def __init__(self, name, background, goal, secrets, personality): self.name = name self.background = background self.goal = goal self.secrets = secrets self.personality = personality def get_starter_prompt(machine_agent, human_agent, scenario): return f"Prompt after formatting:\nImagine you are {machine_agent.name}, your task is to act/speak as {machine_agent.name} would, keeping in mind {machine_agent.name}'s social goal.\nYou can find {machine_agent.name}'s background and goal in the 'Here is the context of the interaction' field.\nNote that {machine_agent.name}'s secret and goal is only visible to you.\nYou should try your best to achieve {machine_agent.name}'s goal in a way that align with their character traits.\nAdditionally, maintaining the conversation's naturalness and realism is essential (e.g., do not repeat what other people has already said before).\n\nHere is the context of this interaction:\n Scenario: {scenario}\nParticipants: {human_agent.name} and {machine_agent.name}\n{human_agent.name}'s background: {human_agent.background} Personality and values description: {human_agent.personality} \n{machine_agent.name}'s background: {machine_agent.background} Personality and values description: {machine_agent.personality} {machine_agent.name}'s secrets: {machine_agent.secrets}\n{human_agent.name}'s goal: Unknown\n{machine_agent.name}'s goal: {machine_agent.goal}\nConversation Starts:" # we define history as # [(user_message, bot_message), (user_message, bot_message)] # we define dialogue history as # user_name: user_message\nbot_name: bot_message\nuser_name: user_message\nbot_name: bot_message\n def dialogue_history_length_check(string, max_token, tokenizer): prompt_tokens = len(tokenizer(string)["input_ids"]) return max(prompt_tokens - max_token, 0) def truncate_dialogue_history_to_length(dia_his, surpass_num, tokenizer): dia_sen = dia_his.split("\n") remove_len = 0 i = 0 while remove_len < surpass_num: remove_len += len(tokenizer(dia_sen[i])["input_ids"]) i += 1 trunc_dia = "\n".join(p for p in dia_sen[i:]) return trunc_dia def dialogue_history_creation(history, user_name, bot_name): dialogue_history = "" for idx, turn in enumerate(history): user_message, bot_message = turn # TODOTODO (haofeiyu): we first assume that human talks first user_turn_idx = idx * 2 bot_turn_idx = idx * 2 + 1 dialogue_history = f"{dialogue_history}\n\nTurn #{user_turn_idx}: {user_name}: {user_message}\n\nTurn #{bot_turn_idx}: {bot_name}: {bot_message}" last_turn_idx = len(history) * 2 return dialogue_history, last_turn_idx def dialogue_history_truncation(dialogue_history, max_token_num, tokenizer): surpass_num = dialogue_history_length_check( dialogue_history, max_token_num, tokenizer ) if surpass_num > 0: dialogue_history = truncate_dialogue_history_to_length( dialogue_history, surpass_num, tokenizer ) return dialogue_history def format_sotopia_prompt( message: str, history: List[Tuple[str, str]], instructions: str, user_name: str, bot_name: str, include_all_chat_history: bool = True, index: int = 1, ) -> str: prompt = instructions.strip() dialogue_history, last_turn_idx = dialogue_history_creation( history, user_name, bot_name ) prompt = f"{prompt}\n{dialogue_history}" prompt = f"{prompt}\n\nTurn #{last_turn_idx+1}: {user_name}: {message}\n.\nYou are at Turn #{last_turn_idx+2}." return prompt