File size: 3,043 Bytes
1b1f8bd
 
 
 
31b5130
c4a1eee
1b1f8bd
b9c59dd
98a45af
1b1f8bd
 
 
45770ea
1b1f8bd
 
e20b343
31b5130
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
598d19d
1b1f8bd
 
 
 
 
 
 
 
31b5130
 
 
1b1f8bd
 
 
 
 
 
3b0b0de
 
 
8e6c03a
 
3f8872c
 
 
 
8e6c03a
1b1f8bd
2ff0f36
1b1f8bd
56830a2
 
3f8872c
1b1f8bd
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
import pandas
import numpy
import gradio
import matplotlib.pyplot
import math
import datasets


data = datasets.load_dataset("cmudrc/truss-design-study", data_files="1-s2.0-S2352340918302014-mmc2.csv")["train"].to_pandas()

def how_many_designs(team: int, participant: int):
    n = len(numpy.unique(data[(data['Team'] == team) & (data['Participant'] == participant)]['Design']))
    return gradio.Slider.update(1, n, step=1)

def print_design(team: int, participant: int, design: int):
    matplotlib.pyplot.close()
    fig, ax = matplotlib.pyplot.subplots(1)

    s = 0.3
    h = s*math.sqrt(3)/2
    matplotlib.pyplot.fill([-5.0, -5.0-s*0.5, -5.0+s*0.5], [0.0, -h, -h], color="black")
    matplotlib.pyplot.fill([1.0, 1.0-s*0.5, 1.0+s*0.5], [0.0, -h, -h], color="black")
    matplotlib.pyplot.fill([5.0, 5.0-s*0.5, 5.0+s*0.5], [0.0, -h, -h], color="black")

    matplotlib.pyplot.axis('equal')
    matplotlib.pyplot.xlim([-6.0, 6.0])
    matplotlib.pyplot.ylim([-3.0, 5.0])
    ax.set_xticks(range(-6, 7))
    ax.set_yticks(range(-3, 6))
    ax.set_yticklabels([])
    ax.set_xticklabels([])
    matplotlib.pyplot.grid()

    df = data[(data['Team'] == int(team)) & (data['Participant'] == int(participant)) & (data['Design'] == int(design))]
    nodes = df[df['Component'] > 0]
    edges = df[df['Component'] < 0]
    e1 = [int(x) for x in edges['Var1'].values]
    e2 = [int(x) for x in edges['Var2'].values]
    all_info = [e1, e2, [0]*len(e1)]
    idx = numpy.array(all_info).transpose().flatten()
    x = [None if i == 0 else nodes[nodes['Component'] == i]['Var1'].values[0] for i in idx]
    y = [None if i == 0 else nodes[nodes['Component'] == i]['Var2'].values[0] for i in idx]
    matplotlib.pyplot.plot(x, y, color="grey")
    matplotlib.pyplot.plot(nodes['Var1'].values, nodes['Var2'].values, linestyle='none', marker='o', label="", color="black")


    return fig

with gradio.Blocks() as demo:
  with gradio.Row():
    with gradio.Column():
      team = gradio.Dropdown(choices=[str(i) for i in range(1,17)], value="1", label="Team Number")
      participant = gradio.Dropdown(choices=[str(i) for i in range(1,4)], value="1", label="Teammate Number")
      design = gradio.Slider(1, 100, step=1, value=1, label="Design Number")

      with gradio.Row():
          btn1 = gradio.Button("< Reverse", variant="secondary")
          btn1.click(fn=lambda x: gradio.Slider.update(value=x-1), inputs=[design], outputs=[design], show_progress=False)
          btn2 = gradio.Button("Forward >", variant="primary")
          btn2.click(fn=lambda x: gradio.Slider.update(value=x+1), inputs=[design], outputs=[design], show_progress=False)

    with gradio.Column():
      output = gradio.Plot(value=print_design(1, 1, 1))

    participant.change(fn=print_design, inputs=[team, participant, design], outputs=[output])
    team.change(fn=print_design, inputs=[team, participant, design], outputs=[output])
    design.change(fn=print_design, inputs=[team, participant, design], outputs=[output], show_progress=False)

demo.launch(debug=True)