from transformers import pipeline import gradio as gr def coding(model, text, codetext): classifier = pipeline("zero-shot-classification", model=model) codelist = codetext.split(';') output = classifier(text, codelist, multi_label=True) return output iface = gr.Interface( fn=coding, inputs=[ gr.Radio( [ "facebook/bart-large-mnli", "MoritzLaurer/multilingual-MiniLMv2-L6-mnli-xnli", "MoritzLaurer/mDeBERTa-v3-base-xnli-multilingual-nli-2mil7", "MoritzLaurer/mDeBERTa-v3-base-mnli-xnli", "MoritzLaurer/deberta-v3-large-zeroshot-v2.0", #"joeddav/xlm-roberta-large-xnli" ], #min_width=200, #scale=2, value="facebook/bart-large-mnli", label="Model" ), gr.TextArea( label='Comment', value='感覺性格溫和,適合香港人,特別係亞洲人的肌膚,不足之處就是感覺很少有優惠,價錢都比較貴' ), gr.Textbox( label='Code list (colon-separated)', value='非常好/很好/好滿意;價錢合理/實惠/不太貴/親民/價格適中/價格便宜/價錢大眾化;價錢貴/不合理/比日本台灣貴/可以再平d' ) ], outputs=[ #gr.Textbox(label='Result') gr.JSON() #gr.BarPlot() ], title="NuanceTree Coding Test", description="Test Zero-Shot Classification", allow_flagging='never' ) iface.launch()