|
import os |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.init as init |
|
from einops import rearrange |
|
import numpy as np |
|
from diffusers.models.modeling_utils import ModelMixin |
|
|
|
from typing import Any, Dict, Optional |
|
from src.models.attention import BasicTransformerBlock |
|
|
|
|
|
class PoseGuider(ModelMixin): |
|
def __init__(self, noise_latent_channels=320, use_ca=True): |
|
super(PoseGuider, self).__init__() |
|
|
|
self.use_ca = use_ca |
|
|
|
self.conv_layers = nn.Sequential( |
|
nn.Conv2d(in_channels=3, out_channels=3, kernel_size=3, padding=1), |
|
nn.BatchNorm2d(3), |
|
nn.ReLU(), |
|
nn.Conv2d(in_channels=3, out_channels=16, kernel_size=4, stride=2, padding=1), |
|
nn.BatchNorm2d(16), |
|
nn.ReLU(), |
|
|
|
nn.Conv2d(in_channels=16, out_channels=16, kernel_size=3, padding=1), |
|
nn.BatchNorm2d(16), |
|
nn.ReLU(), |
|
nn.Conv2d(in_channels=16, out_channels=32, kernel_size=4, stride=2, padding=1), |
|
nn.BatchNorm2d(32), |
|
nn.ReLU(), |
|
|
|
nn.Conv2d(in_channels=32, out_channels=32, kernel_size=3, padding=1), |
|
nn.BatchNorm2d(32), |
|
nn.ReLU(), |
|
nn.Conv2d(in_channels=32, out_channels=64, kernel_size=4, stride=2, padding=1), |
|
nn.BatchNorm2d(64), |
|
nn.ReLU(), |
|
|
|
nn.Conv2d(in_channels=64, out_channels=64, kernel_size=3, padding=1), |
|
nn.BatchNorm2d(64), |
|
nn.ReLU(), |
|
nn.Conv2d(in_channels=64, out_channels=128, kernel_size=3, stride=1, padding=1), |
|
nn.BatchNorm2d(128), |
|
nn.ReLU() |
|
) |
|
|
|
|
|
self.final_proj = nn.Conv2d(in_channels=128, out_channels=noise_latent_channels, kernel_size=1) |
|
|
|
self.conv_layers_1 = nn.Sequential( |
|
nn.Conv2d(in_channels=noise_latent_channels, out_channels=noise_latent_channels, kernel_size=3, padding=1), |
|
nn.BatchNorm2d(noise_latent_channels), |
|
nn.ReLU(), |
|
nn.Conv2d(in_channels=noise_latent_channels, out_channels=noise_latent_channels, kernel_size=3, stride=2, padding=1), |
|
nn.BatchNorm2d(noise_latent_channels), |
|
nn.ReLU(), |
|
) |
|
|
|
self.conv_layers_2 = nn.Sequential( |
|
nn.Conv2d(in_channels=noise_latent_channels, out_channels=noise_latent_channels, kernel_size=3, padding=1), |
|
nn.BatchNorm2d(noise_latent_channels), |
|
nn.ReLU(), |
|
nn.Conv2d(in_channels=noise_latent_channels, out_channels=noise_latent_channels*2, kernel_size=3, stride=2, padding=1), |
|
nn.BatchNorm2d(noise_latent_channels*2), |
|
nn.ReLU(), |
|
) |
|
|
|
self.conv_layers_3 = nn.Sequential( |
|
nn.Conv2d(in_channels=noise_latent_channels*2, out_channels=noise_latent_channels*2, kernel_size=3, padding=1), |
|
nn.BatchNorm2d(noise_latent_channels*2), |
|
nn.ReLU(), |
|
nn.Conv2d(in_channels=noise_latent_channels*2, out_channels=noise_latent_channels*4, kernel_size=3, stride=2, padding=1), |
|
nn.BatchNorm2d(noise_latent_channels*4), |
|
nn.ReLU(), |
|
) |
|
|
|
self.conv_layers_4 = nn.Sequential( |
|
nn.Conv2d(in_channels=noise_latent_channels*4, out_channels=noise_latent_channels*4, kernel_size=3, padding=1), |
|
nn.BatchNorm2d(noise_latent_channels*4), |
|
nn.ReLU(), |
|
) |
|
|
|
if self.use_ca: |
|
self.cross_attn1 = Transformer2DModel(in_channels=noise_latent_channels) |
|
self.cross_attn2 = Transformer2DModel(in_channels=noise_latent_channels*2) |
|
self.cross_attn3 = Transformer2DModel(in_channels=noise_latent_channels*4) |
|
self.cross_attn4 = Transformer2DModel(in_channels=noise_latent_channels*4) |
|
|
|
|
|
self._initialize_weights() |
|
|
|
self.scale = nn.Parameter(torch.ones(1) * 2) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _initialize_weights(self): |
|
|
|
conv_blocks = [self.conv_layers, self.conv_layers_1, self.conv_layers_2, self.conv_layers_3, self.conv_layers_4] |
|
for block_item in conv_blocks: |
|
for m in block_item: |
|
if isinstance(m, nn.Conv2d): |
|
n = m.kernel_size[0] * m.kernel_size[1] * m.in_channels |
|
init.normal_(m.weight, mean=0.0, std=np.sqrt(2. / n)) |
|
if m.bias is not None: |
|
init.zeros_(m.bias) |
|
|
|
|
|
init.zeros_(self.final_proj.weight) |
|
if self.final_proj.bias is not None: |
|
init.zeros_(self.final_proj.bias) |
|
|
|
def forward(self, x, ref_x): |
|
fea = [] |
|
b = x.shape[0] |
|
|
|
x = rearrange(x, "b c f h w -> (b f) c h w") |
|
x = self.conv_layers(x) |
|
x = self.final_proj(x) |
|
x = x * self.scale |
|
|
|
fea.append(rearrange(x, "(b f) c h w -> b c f h w", b=b)) |
|
|
|
x = self.conv_layers_1(x) |
|
if self.use_ca: |
|
ref_x = self.conv_layers(ref_x) |
|
ref_x = self.final_proj(ref_x) |
|
ref_x = ref_x * self.scale |
|
ref_x = self.conv_layers_1(ref_x) |
|
x = self.cross_attn1(x, ref_x) |
|
fea.append(rearrange(x, "(b f) c h w -> b c f h w", b=b)) |
|
|
|
x = self.conv_layers_2(x) |
|
if self.use_ca: |
|
ref_x = self.conv_layers_2(ref_x) |
|
x = self.cross_attn2(x, ref_x) |
|
fea.append(rearrange(x, "(b f) c h w -> b c f h w", b=b)) |
|
|
|
x = self.conv_layers_3(x) |
|
if self.use_ca: |
|
ref_x = self.conv_layers_3(ref_x) |
|
x = self.cross_attn3(x, ref_x) |
|
fea.append(rearrange(x, "(b f) c h w -> b c f h w", b=b)) |
|
|
|
x = self.conv_layers_4(x) |
|
if self.use_ca: |
|
ref_x = self.conv_layers_4(ref_x) |
|
x = self.cross_attn4(x, ref_x) |
|
fea.append(rearrange(x, "(b f) c h w -> b c f h w", b=b)) |
|
|
|
return fea |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class Transformer2DModel(ModelMixin): |
|
_supports_gradient_checkpointing = True |
|
def __init__( |
|
self, |
|
num_attention_heads: int = 16, |
|
attention_head_dim: int = 88, |
|
in_channels: Optional[int] = None, |
|
num_layers: int = 1, |
|
dropout: float = 0.0, |
|
norm_num_groups: int = 32, |
|
cross_attention_dim: Optional[int] = None, |
|
attention_bias: bool = False, |
|
activation_fn: str = "geglu", |
|
num_embeds_ada_norm: Optional[int] = None, |
|
use_linear_projection: bool = False, |
|
only_cross_attention: bool = False, |
|
double_self_attention: bool = False, |
|
upcast_attention: bool = False, |
|
norm_type: str = "layer_norm", |
|
norm_elementwise_affine: bool = True, |
|
norm_eps: float = 1e-5, |
|
attention_type: str = "default", |
|
): |
|
super().__init__() |
|
self.use_linear_projection = use_linear_projection |
|
self.num_attention_heads = num_attention_heads |
|
self.attention_head_dim = attention_head_dim |
|
inner_dim = num_attention_heads * attention_head_dim |
|
|
|
self.in_channels = in_channels |
|
|
|
self.norm = torch.nn.GroupNorm( |
|
num_groups=norm_num_groups, |
|
num_channels=in_channels, |
|
eps=1e-6, |
|
affine=True, |
|
) |
|
if use_linear_projection: |
|
self.proj_in = nn.Linear(in_channels, inner_dim) |
|
else: |
|
self.proj_in = nn.Conv2d( |
|
in_channels, inner_dim, kernel_size=1, stride=1, padding=0 |
|
) |
|
|
|
|
|
self.transformer_blocks = nn.ModuleList( |
|
[ |
|
BasicTransformerBlock( |
|
inner_dim, |
|
num_attention_heads, |
|
attention_head_dim, |
|
dropout=dropout, |
|
cross_attention_dim=cross_attention_dim, |
|
activation_fn=activation_fn, |
|
num_embeds_ada_norm=num_embeds_ada_norm, |
|
attention_bias=attention_bias, |
|
only_cross_attention=only_cross_attention, |
|
double_self_attention=double_self_attention, |
|
upcast_attention=upcast_attention, |
|
norm_type=norm_type, |
|
norm_elementwise_affine=norm_elementwise_affine, |
|
norm_eps=norm_eps, |
|
attention_type=attention_type, |
|
) |
|
for d in range(num_layers) |
|
] |
|
) |
|
|
|
if use_linear_projection: |
|
self.proj_out = nn.Linear(inner_dim, in_channels) |
|
else: |
|
self.proj_out = nn.Conv2d( |
|
inner_dim, in_channels, kernel_size=1, stride=1, padding=0 |
|
) |
|
|
|
self.gradient_checkpointing = False |
|
|
|
def _set_gradient_checkpointing(self, module, value=False): |
|
if hasattr(module, "gradient_checkpointing"): |
|
module.gradient_checkpointing = value |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
encoder_hidden_states: Optional[torch.Tensor] = None, |
|
timestep: Optional[torch.LongTensor] = None, |
|
): |
|
batch, _, height, width = hidden_states.shape |
|
residual = hidden_states |
|
|
|
hidden_states = self.norm(hidden_states) |
|
if not self.use_linear_projection: |
|
hidden_states = self.proj_in(hidden_states) |
|
inner_dim = hidden_states.shape[1] |
|
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape( |
|
batch, height * width, inner_dim |
|
) |
|
else: |
|
inner_dim = hidden_states.shape[1] |
|
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape( |
|
batch, height * width, inner_dim |
|
) |
|
hidden_states = self.proj_in(hidden_states) |
|
|
|
for block in self.transformer_blocks: |
|
hidden_states = block( |
|
hidden_states, |
|
encoder_hidden_states=encoder_hidden_states, |
|
timestep=timestep, |
|
) |
|
|
|
if not self.use_linear_projection: |
|
hidden_states = ( |
|
hidden_states.reshape(batch, height, width, inner_dim) |
|
.permute(0, 3, 1, 2) |
|
.contiguous() |
|
) |
|
hidden_states = self.proj_out(hidden_states) |
|
else: |
|
hidden_states = self.proj_out(hidden_states) |
|
hidden_states = ( |
|
hidden_states.reshape(batch, height, width, inner_dim) |
|
.permute(0, 3, 1, 2) |
|
.contiguous() |
|
) |
|
|
|
output = hidden_states + residual |
|
return output |
|
|
|
|
|
if __name__ == '__main__': |
|
model = PoseGuider(noise_latent_channels=320).to(device="cuda") |
|
|
|
input_data = torch.randn(1,3,1,512,512).to(device="cuda") |
|
input_data1 = torch.randn(1,3,512,512).to(device="cuda") |
|
|
|
output = model(input_data, input_data1) |
|
for item in output: |
|
print(item.shape) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|