import gradio as gr from gradio_imageslider import ImageSlider from PIL import Image import numpy as np from aura_sr import AuraSR import torch #import spaces # Force CPU usage torch.set_default_tensor_type(torch.FloatTensor) # Override torch.load to always use CPU original_load = torch.load torch.load = lambda *args, **kwargs: original_load(*args, **kwargs, map_location=torch.device('cpu')) # Initialize the AuraSR model aura_sr = AuraSR.from_pretrained("fal-ai/AuraSR") # Restore original torch.load torch.load = original_load #@spaces.GPU def process_image(input_image): if input_image is None: return None # Convert to PIL Image for resizing pil_image = Image.fromarray(input_image) # Upscale the image using AuraSR with torch.no_grad(): upscaled_image = aura_sr.upscale_4x(pil_image) # Convert result to numpy array if it's not already result_array = np.array(upscaled_image) return [input_image, result_array] title = """

AuraSR - An open reproduction of the GigaGAN Upscaler from fal.ai

[Blog Post] [Model Page]

""" with gr.Blocks() as demo: gr.HTML(title) with gr.Row(): with gr.Column(scale=1): input_image = gr.Image(label="Input Image", type="numpy") process_btn = gr.Button("Upscale Image") with gr.Column(scale=1): output_slider = ImageSlider(label="Before / After", type="numpy") process_btn.click( fn=process_image, inputs=[input_image], outputs=output_slider ) # Add examples gr.Examples( examples=[ "image1.png", "image2.png", "image3.png" ], inputs=input_image, outputs=output_slider, fn=process_image, cache_examples=True ) demo.launch(debug=True)