Spaces:
Runtime error
Runtime error
import numpy as np | |
import torch.nn.functional as F | |
from torchvision.transforms.functional import normalize | |
from models import BriaRMBG | |
import gradio as gr | |
import git # pip install gitpython | |
net=BriaRMBG() | |
model_path = "./model.pth" | |
git.Git(".").clone("https://huggingface.co/spaces/briaai/BRIA-RMBG-1.4") | |
if torch.cuda.is_available(): | |
net.load_state_dict(torch.load(model_path)) | |
net=net.cuda() | |
else: | |
net.load_state_dict(torch.load(model_path,map_location="cpu")) | |
net.eval() | |
def image_size_by_min_resolution( | |
image: Image.Image, | |
resolution: Tuple, | |
resample=None, | |
): | |
w, h = image.size | |
image_min = min(w, h) | |
resolution_min = min(resolution) | |
scale_factor = image_min / resolution_min | |
resize_to: Tuple[int, int] = ( | |
int(w // scale_factor), | |
int(h // scale_factor), | |
) | |
return resize_to | |
def resize_image(image): | |
image = image.convert('RGB') | |
new_image_size = image_size_by_min_resolution(image=image,resolution=(1024, 1024)) | |
image = image.resize(new_image_size, Image.BILINEAR) | |
return image | |
def process(input_image): | |
# prepare input | |
orig_image = Image.open(im_path) | |
w,h = orig_im_size = orig_image.size | |
image = resize_image(orig_image) | |
im_np = np.array(image) | |
im_tensor = torch.tensor(im_np, dtype=torch.float32).permute(2,0,1) | |
im_tensor = torch.unsqueeze(im_tensor,0) | |
im_tensor = torch.divide(im_tensor,255.0) | |
im_tensor = normalize(im_tensor,[0.5,0.5,0.5],[1.0,1.0,1.0]) | |
if torch.cuda.is_available(): | |
im_tensor=im_tensor.cuda() | |
#inference | |
result=net(im_tensor) | |
# post process | |
result = torch.squeeze(F.interpolate(result[0][0], size=(h,w), mode='bilinear') ,0) | |
ma = torch.max(result) | |
mi = torch.min(result) | |
result = (result-mi)/(ma-mi) | |
# save result | |
im_array = (result*255).cpu().data.numpy().astype(np.uint8) | |
pil_im = Image.fromarray(np.squeeze(im_array)) | |
# paste the mask on the original image | |
new_im = Image.new("RGBA", pil_im.size, (0,0,0)) | |
new_im.paste(orig_image, mask=pil_im) | |
return new_im | |
block = gr.Blocks().queue() | |
with block: | |
gr.Markdown("## BRIA RMBG 1.4") | |
gr.HTML(''' | |
<p style="margin-bottom: 10px; font-size: 94%"> | |
This is a demo for BRIA RMBG 1.4 that using | |
<a href="https://huggingface.co/briaai/RMBG-1.4" target="_blank">BRIA RMBG-1.4 image matting model</a> as backbone. | |
</p> | |
''') | |
with gr.Row(): | |
with gr.Column(): | |
# input_image = gr.Image(sources=None, type="pil") # None for upload, ctrl+v and webcam | |
input_image = gr.Image(sources=None, type="numpy") # None for upload, ctrl+v and webcam | |
run_button = gr.Button(value="Run") | |
with gr.Column(): | |
result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery", columns=[2], height='auto') | |
ips = [input_image] | |
run_button.click(fn=process, inputs=ips, outputs=[result_gallery]) | |
block.launch(debug = True) |