File size: 17,040 Bytes
938e515
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d15bc68
938e515
 
 
 
 
 
 
1a13129
938e515
4c8dced
 
938e515
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24662ea
938e515
 
 
ec0e0d5
 
938e515
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ec0e0d5
 
938e515
 
 
 
ec0e0d5
 
938e515
 
 
 
ec0e0d5
 
938e515
 
 
ec0e0d5
 
938e515
 
 
 
 
 
ec0e0d5
 
938e515
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ec0e0d5
 
938e515
 
 
d15bc68
ab2e314
4c8dced
 
938e515
 
 
 
 
ec0e0d5
ab2e314
 
 
 
 
 
 
 
 
 
 
 
 
938e515
 
 
 
 
 
 
b7d9c38
 
595105e
 
938e515
 
 
 
4c8dced
ec0e0d5
 
 
 
 
938e515
ec0e0d5
 
938e515
ec0e0d5
 
938e515
 
ec0e0d5
 
 
 
 
938e515
 
 
ec0e0d5
 
 
 
938e515
 
 
ec0e0d5
938e515
 
595105e
ec0e0d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
595105e
 
ec0e0d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ab2e314
 
ec0e0d5
 
ab2e314
 
 
 
938e515
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
164e9d5
938e515
 
4dbb263
 
938e515
 
c123434
938e515
ab2e314
 
 
 
938e515
 
c123434
938e515
 
 
 
 
 
 
 
 
 
ab2e314
938e515
595105e
 
 
938e515
 
 
 
595105e
 
 
938e515
 
 
 
 
 
 
 
6de0e51
ab2e314
938e515
 
 
 
ec0e0d5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
import gradio as gr
from PIL import Image
from src.tryon_pipeline import StableDiffusionXLInpaintPipeline as TryonPipeline
from src.unet_hacked_garmnet import UNet2DConditionModel as UNet2DConditionModel_ref
from src.unet_hacked_tryon import UNet2DConditionModel
from transformers import (
    CLIPImageProcessor,
    CLIPVisionModelWithProjection,
    CLIPTextModel,
    CLIPTextModelWithProjection,
)
from diffusers import DDPMScheduler,AutoencoderKL
from typing import List

import torch
import os
from transformers import AutoTokenizer
#import spaces
import numpy as np
from utils_mask import get_mask_location
from torchvision import transforms
import apply_net
from preprocess.humanparsing.run_parsing import Parsing
from preprocess.openpose.run_openpose import OpenPose
from detectron2.data.detection_utils import convert_PIL_to_numpy,_apply_exif_orientation
from torchvision.transforms.functional import to_pil_image

import devicetorch

def pil_to_binary_mask(pil_image, threshold=0):
    np_image = np.array(pil_image)
    grayscale_image = Image.fromarray(np_image).convert("L")
    binary_mask = np.array(grayscale_image) > threshold
    mask = np.zeros(binary_mask.shape, dtype=np.uint8)
    for i in range(binary_mask.shape[0]):
        for j in range(binary_mask.shape[1]):
            if binary_mask[i,j] == True :
                mask[i,j] = 1
    mask = (mask*255).astype(np.uint8)
    output_mask = Image.fromarray(mask)
    return output_mask


base_path = 'yisol/IDM-VTON'
example_path = os.path.join(os.path.dirname(__file__), 'example')

dtype = devicetorch.dtype(torch, "float16")
unet = UNet2DConditionModel.from_pretrained(
    base_path,
    subfolder="unet",
    #torch_dtype=torch.float16,
    torch_dtype=dtype,
)
unet.requires_grad_(False)
tokenizer_one = AutoTokenizer.from_pretrained(
    base_path,
    subfolder="tokenizer",
    revision=None,
    use_fast=False,
)
tokenizer_two = AutoTokenizer.from_pretrained(
    base_path,
    subfolder="tokenizer_2",
    revision=None,
    use_fast=False,
)
noise_scheduler = DDPMScheduler.from_pretrained(base_path, subfolder="scheduler")

text_encoder_one = CLIPTextModel.from_pretrained(
    base_path,
    subfolder="text_encoder",
    #torch_dtype=torch.float16,
    torch_dtype=dtype,
)
text_encoder_two = CLIPTextModelWithProjection.from_pretrained(
    base_path,
    subfolder="text_encoder_2",
    #torch_dtype=torch.float16,
    torch_dtype=dtype,
)
image_encoder = CLIPVisionModelWithProjection.from_pretrained(
    base_path,
    subfolder="image_encoder",
    #torch_dtype=torch.float16,
    torch_dtype=dtype,
    )
vae = AutoencoderKL.from_pretrained(base_path,
                                    subfolder="vae",
                                    #torch_dtype=torch.float16,
                                    torch_dtype=dtype,
)

# "stabilityai/stable-diffusion-xl-base-1.0",
UNet_Encoder = UNet2DConditionModel_ref.from_pretrained(
    base_path,
    subfolder="unet_encoder",
    #torch_dtype=torch.float16,
    torch_dtype=dtype,
)

parsing_model = Parsing(0)
openpose_model = OpenPose(0)

UNet_Encoder.requires_grad_(False)
image_encoder.requires_grad_(False)
vae.requires_grad_(False)
unet.requires_grad_(False)
text_encoder_one.requires_grad_(False)
text_encoder_two.requires_grad_(False)
tensor_transfrom = transforms.Compose(
            [
                transforms.ToTensor(),
                transforms.Normalize([0.5], [0.5]),
            ]
    )

pipe = TryonPipeline.from_pretrained(
        base_path,
        unet=unet,
        vae=vae,
        feature_extractor= CLIPImageProcessor(),
        text_encoder = text_encoder_one,
        text_encoder_2 = text_encoder_two,
        tokenizer = tokenizer_one,
        tokenizer_2 = tokenizer_two,
        scheduler = noise_scheduler,
        image_encoder=image_encoder,
        #torch_dtype=torch.float16,
        torch_dtype=dtype,
)
pipe.unet_encoder = UNet_Encoder

#@spaces.GPU
def start_tryon(dict,garm_img,garment_des,is_checked,is_checked_crop,denoise_steps,seed):
    #device = "cuda"
    device = devicetorch.get(torch)
    openpose_model.preprocessor.body_estimation.model.to(device)
    pipe.to(device)
    pipe.unet_encoder.to(device)

    garm_img= garm_img.convert("RGB").resize((768,1024))
    human_img_orig = dict["background"].convert("RGB")
    if is_checked_crop:
        width, height = human_img_orig.size
        target_width = int(min(width, height * (3 / 4)))
        target_height = int(min(height, width * (4 / 3)))
        left = (width - target_width) / 2
        top = (height - target_height) / 2
        right = (width + target_width) / 2
        bottom = (height + target_height) / 2
        cropped_img = human_img_orig.crop((left, top, right, bottom))
        crop_size = cropped_img.size
        human_img = cropped_img.resize((768,1024))
    else:
        human_img = human_img_orig.resize((768,1024))
    if is_checked:
        keypoints = openpose_model(human_img.resize((384,512)))
        model_parse, _ = parsing_model(human_img.resize((384,512)))
        mask, mask_gray = get_mask_location('hd', "upper_body", model_parse, keypoints)
        mask = mask.resize((768,1024))
    else:
        mask = pil_to_binary_mask(dict['layers'][0].convert("RGB").resize((768, 1024)))
        # mask = transforms.ToTensor()(mask)
        # mask = mask.unsqueeze(0)
    mask_gray = (1-transforms.ToTensor()(mask)) * tensor_transfrom(human_img)
    mask_gray = to_pil_image((mask_gray+1.0)/2.0)


    human_img_arg = _apply_exif_orientation(human_img.resize((384,512)))
    human_img_arg = convert_PIL_to_numpy(human_img_arg, format="BGR")
    #args = apply_net.create_argument_parser().parse_args(('show', './configs/densepose_rcnn_R_50_FPN_s1x.yaml', './ckpt/densepose/model_final_162be9.pkl', 'dp_segm', '-v', '--opts', 'MODEL.DEVICE', 'cuda'))

    model_device = "cpu"
    if device == "cuda":
        model_device = "cuda"
    args = apply_net.create_argument_parser().parse_args(('show', './configs/densepose_rcnn_R_50_FPN_s1x.yaml', './ckpt/densepose/model_final_162be9.pkl', 'dp_segm', '-v', '--opts', 'MODEL.DEVICE', model_device))
    # verbosity = getattr(args, "verbosity", None)
    pose_img = args.func(args,human_img_arg)
    pose_img = pose_img[:,:,::-1]
    pose_img = Image.fromarray(pose_img).resize((768,1024))
    #pose_img = Image.fromarray(pose_img).resize((512, 768))

    with torch.no_grad():
        # Extract the images

        if device == "cuda":
            with torch.cuda.amp.autocast():
                with torch.no_grad():
                    prompt = "model is wearing " + garment_des
                    negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
                    with torch.inference_mode():
                        (
                            prompt_embeds,
                            negative_prompt_embeds,
                            pooled_prompt_embeds,
                            negative_pooled_prompt_embeds,
                        ) = pipe.encode_prompt(
                            prompt,
                            num_images_per_prompt=1,
                            do_classifier_free_guidance=True,
                            negative_prompt=negative_prompt,
                        )

                        prompt = "a photo of " + garment_des
                        negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
                        if not isinstance(prompt, List):
                            prompt = [prompt] * 1
                        if not isinstance(negative_prompt, List):
                            negative_prompt = [negative_prompt] * 1
                        with torch.inference_mode():
                            (
                                prompt_embeds_c,
                                _,
                                _,
                                _,
                            ) = pipe.encode_prompt(
                                prompt,
                                num_images_per_prompt=1,
                                do_classifier_free_guidance=False,
                                negative_prompt=negative_prompt,
                            )



                        #pose_img =  tensor_transfrom(pose_img).unsqueeze(0).to(device,torch.float16)
                        pose_img =  tensor_transfrom(pose_img).unsqueeze(0).to(device,dtype)
                        #garm_tensor =  tensor_transfrom(garm_img).unsqueeze(0).to(device,torch.float16)
                        garm_tensor =  tensor_transfrom(garm_img).unsqueeze(0).to(device,dtype)
                        generator = torch.Generator(device).manual_seed(seed) if seed is not None else None
                        images = pipe(
                            prompt_embeds=prompt_embeds.to(device,dtype),
                            #prompt_embeds=prompt_embeds.to(device,torch.float16),
                            negative_prompt_embeds=negative_prompt_embeds.to(device,dtype),
                            #negative_prompt_embeds=negative_prompt_embeds.to(device,torch.float16),
                            pooled_prompt_embeds=pooled_prompt_embeds.to(device,dtype),
                            #pooled_prompt_embeds=pooled_prompt_embeds.to(device,torch.float16),
                            negative_pooled_prompt_embeds=negative_pooled_prompt_embeds.to(device,dtype),
                            #negative_pooled_prompt_embeds=negative_pooled_prompt_embeds.to(device,torch.float16),
                            num_inference_steps=denoise_steps,
                            generator=generator,
                            strength = 1.0,
                            #pose_img = pose_img.to(device,torch.float16),
                            pose_img = pose_img.to(device,dtype),
                            #text_embeds_cloth=prompt_embeds_c.to(device,torch.float16),
                            text_embeds_cloth=prompt_embeds_c.to(device,dtype),
                            #cloth = garm_tensor.to(device,torch.float16),
                            cloth = garm_tensor.to(device,dtype),
                            mask_image=mask,
                            image=human_img,
                            height=1024,
                            width=768,
                            ip_adapter_image = garm_img.resize((768,1024)),
                            guidance_scale=2.0,
                        )[0]
        else:
            prompt = "model is wearing " + garment_des
            negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
            with torch.inference_mode():
                (
                    prompt_embeds,
                    negative_prompt_embeds,
                    pooled_prompt_embeds,
                    negative_pooled_prompt_embeds,
                ) = pipe.encode_prompt(
                    prompt,
                    num_images_per_prompt=1,
                    do_classifier_free_guidance=True,
                    negative_prompt=negative_prompt,
                )

                prompt = "a photo of " + garment_des
                negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
                if not isinstance(prompt, List):
                    prompt = [prompt] * 1
                if not isinstance(negative_prompt, List):
                    negative_prompt = [negative_prompt] * 1
                with torch.inference_mode():
                    (
                        prompt_embeds_c,
                        _,
                        _,
                        _,
                    ) = pipe.encode_prompt(
                        prompt,
                        num_images_per_prompt=1,
                        do_classifier_free_guidance=False,
                        negative_prompt=negative_prompt,
                    )



                #pose_img =  tensor_transfrom(pose_img).unsqueeze(0).to(device,torch.float16)
                pose_img =  tensor_transfrom(pose_img).unsqueeze(0).to(device,dtype)
                #garm_tensor =  tensor_transfrom(garm_img).unsqueeze(0).to(device,torch.float16)
                garm_tensor =  tensor_transfrom(garm_img).unsqueeze(0).to(device,dtype)
                generator = torch.Generator(device).manual_seed(seed) if seed is not None else None
                images = pipe(
                    prompt_embeds=prompt_embeds.to(device,dtype),
                    #prompt_embeds=prompt_embeds.to(device,torch.float16),
                    negative_prompt_embeds=negative_prompt_embeds.to(device,dtype),
                    #negative_prompt_embeds=negative_prompt_embeds.to(device,torch.float16),
                    pooled_prompt_embeds=pooled_prompt_embeds.to(device,dtype),
                    #pooled_prompt_embeds=pooled_prompt_embeds.to(device,torch.float16),
                    negative_pooled_prompt_embeds=negative_pooled_prompt_embeds.to(device,dtype),
                    #negative_pooled_prompt_embeds=negative_pooled_prompt_embeds.to(device,torch.float16),
                    num_inference_steps=denoise_steps,
                    generator=generator,
                    strength = 1.0,
                    #pose_img = pose_img.to(device,torch.float16),
                    pose_img = pose_img.to(device,dtype),
                    #text_embeds_cloth=prompt_embeds_c.to(device,torch.float16),
                    text_embeds_cloth=prompt_embeds_c.to(device,dtype),
                    #cloth = garm_tensor.to(device,torch.float16),
                    cloth = garm_tensor.to(device,dtype),
                    mask_image=mask,
                    image=human_img,
                    height=1024,
                    width=768,
                    ip_adapter_image = garm_img.resize((768,1024)),
                    guidance_scale=2.0,
                )[0]

    if is_checked_crop:
        out_img = images[0].resize(crop_size)
        human_img_orig.paste(out_img, (int(left), int(top)))
        return human_img_orig, mask_gray
    else:
        return images[0], mask_gray
    # return images[0], mask_gray

garm_list = os.listdir(os.path.join(example_path,"cloth"))
garm_list_path = [os.path.join(example_path,"cloth",garm) for garm in garm_list]

human_list = os.listdir(os.path.join(example_path,"human"))
human_list_path = [os.path.join(example_path,"human",human) for human in human_list]

human_ex_list = []
for ex_human in human_list_path:
    ex_dict= {}
    ex_dict['background'] = ex_human
    ex_dict['layers'] = None
    ex_dict['composite'] = None
    human_ex_list.append(ex_dict)

##default human


image_blocks = gr.Blocks().queue()
with image_blocks as demo:
    gr.Markdown("## IDM-VTON πŸ‘•πŸ‘”πŸ‘š")
    gr.Markdown("Virtual Try-on with your image and garment image. Check out the [source codes](https://github.com/yisol/IDM-VTON) and the [model](https://huggingface.co/yisol/IDM-VTON)")
    with gr.Row():
        with gr.Column():
            imgs = gr.ImageEditor(sources='upload', type="pil", label='Human. Mask with pen or use auto-masking', interactive=True)
            with gr.Row():
                is_checked = gr.Checkbox(label="Yes", info="Use auto-generated mask (Takes 5 seconds)",value=True)
            with gr.Row():
                is_checked_crop = gr.Checkbox(label="Yes", info="Use auto-crop & resizing",value=False)

            example = gr.Examples(
                inputs=imgs,
                examples_per_page=10,
                examples=human_ex_list
            )

        with gr.Column():
            garm_img = gr.Image(label="Garment", sources='upload', type="pil")
            with gr.Row(elem_id="prompt-container"):
                with gr.Row():
                    prompt = gr.Textbox(placeholder="Description of garment ex) Short Sleeve Round Neck T-shirts", show_label=False, elem_id="prompt")
            example = gr.Examples(
                inputs=garm_img,
                examples_per_page=8,
                examples=garm_list_path)
        with gr.Column():
            # image_out = gr.Image(label="Output", elem_id="output-img", height=400)
            masked_img = gr.Image(label="Masked image output", elem_id="masked-img",show_share_button=False)
        with gr.Column():
            # image_out = gr.Image(label="Output", elem_id="output-img", height=400)
            image_out = gr.Image(label="Output", elem_id="output-img",show_share_button=False)




    with gr.Column():
        try_button = gr.Button(value="Try-on")
        with gr.Accordion(label="Advanced Settings", open=False):
            with gr.Row():
                denoise_steps = gr.Number(label="Denoising Steps", minimum=20, maximum=40, value=30, step=1)
                seed = gr.Number(label="Seed", minimum=-1, maximum=2147483647, step=1, value=42)



    try_button.click(fn=start_tryon, inputs=[imgs, garm_img, prompt, is_checked,is_checked_crop, denoise_steps, seed], outputs=[image_out,masked_img], api_name='tryon')




image_blocks.launch()