Spaces:
Runtime error
Runtime error
# Copyright (c) Facebook, Inc. and its affiliates. | |
import importlib | |
import importlib.util | |
import logging | |
import numpy as np | |
import os | |
import random | |
import sys | |
from datetime import datetime | |
import torch | |
__all__ = ["seed_all_rng"] | |
TORCH_VERSION = tuple(int(x) for x in torch.__version__.split(".")[:2]) | |
""" | |
PyTorch version as a tuple of 2 ints. Useful for comparison. | |
""" | |
DOC_BUILDING = os.getenv("_DOC_BUILDING", False) # set in docs/conf.py | |
""" | |
Whether we're building documentation. | |
""" | |
def seed_all_rng(seed=None): | |
""" | |
Set the random seed for the RNG in torch, numpy and python. | |
Args: | |
seed (int): if None, will use a strong random seed. | |
""" | |
if seed is None: | |
seed = ( | |
os.getpid() | |
+ int(datetime.now().strftime("%S%f")) | |
+ int.from_bytes(os.urandom(2), "big") | |
) | |
logger = logging.getLogger(__name__) | |
logger.info("Using a generated random seed {}".format(seed)) | |
np.random.seed(seed) | |
torch.manual_seed(seed) | |
random.seed(seed) | |
os.environ["PYTHONHASHSEED"] = str(seed) | |
# from https://stackoverflow.com/questions/67631/how-to-import-a-module-given-the-full-path | |
def _import_file(module_name, file_path, make_importable=False): | |
spec = importlib.util.spec_from_file_location(module_name, file_path) | |
module = importlib.util.module_from_spec(spec) | |
spec.loader.exec_module(module) | |
if make_importable: | |
sys.modules[module_name] = module | |
return module | |
def _configure_libraries(): | |
""" | |
Configurations for some libraries. | |
""" | |
# An environment option to disable `import cv2` globally, | |
# in case it leads to negative performance impact | |
disable_cv2 = int(os.environ.get("DETECTRON2_DISABLE_CV2", False)) | |
if disable_cv2: | |
sys.modules["cv2"] = None | |
else: | |
# Disable opencl in opencv since its interaction with cuda often has negative effects | |
# This envvar is supported after OpenCV 3.4.0 | |
os.environ["OPENCV_OPENCL_RUNTIME"] = "disabled" | |
try: | |
import cv2 | |
if int(cv2.__version__.split(".")[0]) >= 3: | |
cv2.ocl.setUseOpenCL(False) | |
except ModuleNotFoundError: | |
# Other types of ImportError, if happened, should not be ignored. | |
# Because a failed opencv import could mess up address space | |
# https://github.com/skvark/opencv-python/issues/381 | |
pass | |
def get_version(module, digit=2): | |
return tuple(map(int, module.__version__.split(".")[:digit])) | |
# fmt: off | |
assert get_version(torch) >= (1, 4), "Requires torch>=1.4" | |
import fvcore | |
assert get_version(fvcore, 3) >= (0, 1, 2), "Requires fvcore>=0.1.2" | |
import yaml | |
assert get_version(yaml) >= (5, 1), "Requires pyyaml>=5.1" | |
# fmt: on | |
_ENV_SETUP_DONE = False | |
def setup_environment(): | |
"""Perform environment setup work. The default setup is a no-op, but this | |
function allows the user to specify a Python source file or a module in | |
the $DETECTRON2_ENV_MODULE environment variable, that performs | |
custom setup work that may be necessary to their computing environment. | |
""" | |
global _ENV_SETUP_DONE | |
if _ENV_SETUP_DONE: | |
return | |
_ENV_SETUP_DONE = True | |
_configure_libraries() | |
custom_module_path = os.environ.get("DETECTRON2_ENV_MODULE") | |
if custom_module_path: | |
setup_custom_environment(custom_module_path) | |
else: | |
# The default setup is a no-op | |
pass | |
def setup_custom_environment(custom_module): | |
""" | |
Load custom environment setup by importing a Python source file or a | |
module, and run the setup function. | |
""" | |
if custom_module.endswith(".py"): | |
module = _import_file("detectron2.utils.env.custom_module", custom_module) | |
else: | |
module = importlib.import_module(custom_module) | |
assert hasattr(module, "setup_environment") and callable(module.setup_environment), ( | |
"Custom environment module defined in {} does not have the " | |
"required callable attribute 'setup_environment'." | |
).format(custom_module) | |
module.setup_environment() | |
def fixup_module_metadata(module_name, namespace, keys=None): | |
""" | |
Fix the __qualname__ of module members to be their exported api name, so | |
when they are referenced in docs, sphinx can find them. Reference: | |
https://github.com/python-trio/trio/blob/6754c74eacfad9cc5c92d5c24727a2f3b620624e/trio/_util.py#L216-L241 | |
""" | |
if not DOC_BUILDING: | |
return | |
seen_ids = set() | |
def fix_one(qualname, name, obj): | |
# avoid infinite recursion (relevant when using | |
# typing.Generic, for example) | |
if id(obj) in seen_ids: | |
return | |
seen_ids.add(id(obj)) | |
mod = getattr(obj, "__module__", None) | |
if mod is not None and (mod.startswith(module_name) or mod.startswith("fvcore.")): | |
obj.__module__ = module_name | |
# Modules, unlike everything else in Python, put fully-qualitied | |
# names into their __name__ attribute. We check for "." to avoid | |
# rewriting these. | |
if hasattr(obj, "__name__") and "." not in obj.__name__: | |
obj.__name__ = name | |
obj.__qualname__ = qualname | |
if isinstance(obj, type): | |
for attr_name, attr_value in obj.__dict__.items(): | |
fix_one(objname + "." + attr_name, attr_name, attr_value) | |
if keys is None: | |
keys = namespace.keys() | |
for objname in keys: | |
if not objname.startswith("_"): | |
obj = namespace[objname] | |
fix_one(objname, objname, obj) | |