Spaces:
Runtime error
Runtime error
Replace gr.Files with gr.Image (#8)
Browse files- Apply formatter (b106068ca93ab77524c9462ecb68227be875efb0)
- Clean up (d3fe5c54697abbb6981b1dc434863c55ca0fde3a)
- Use gr.Image instead of gr.Files (938be836b4c274cd120d4e408e793e7247a03342)
- Add cached examples (a075b7a9c7764bfe3c4e6ace40d3b12c06e08015)
Co-authored-by: hysts <hysts@users.noreply.huggingface.co>
- .gitattributes +1 -0
- app.py +165 -141
- gradio_cached_examples/25/Generated Image/2880a3d19ef9b42e3ed2/image.png +3 -0
- gradio_cached_examples/25/Generated Image/38dde1388c41109c5d39/image.png +3 -0
- gradio_cached_examples/25/Generated Image/6cb5a3af223906666bfd/image.png +3 -0
- gradio_cached_examples/25/Generated Image/7e6ea85f77dd925d842c/image.png +3 -0
- gradio_cached_examples/25/Generated Image/e56b029833685ff77e6a/image.png +3 -0
- gradio_cached_examples/25/log.csv +6 -0
.gitattributes
CHANGED
@@ -36,3 +36,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
36 |
examples/kaifu_resize.png filter=lfs diff=lfs merge=lfs -text
|
37 |
examples/sam_resize.png filter=lfs diff=lfs merge=lfs -text
|
38 |
examples/schmidhuber_resize.png filter=lfs diff=lfs merge=lfs -text
|
|
|
|
36 |
examples/kaifu_resize.png filter=lfs diff=lfs merge=lfs -text
|
37 |
examples/sam_resize.png filter=lfs diff=lfs merge=lfs -text
|
38 |
examples/schmidhuber_resize.png filter=lfs diff=lfs merge=lfs -text
|
39 |
+
*.png filter=lfs diff=lfs merge=lfs -text
|
app.py
CHANGED
@@ -1,25 +1,19 @@
|
|
1 |
-
import os
|
2 |
-
import cv2
|
3 |
import math
|
4 |
-
import spaces
|
5 |
-
import torch
|
6 |
import random
|
7 |
-
import numpy as np
|
8 |
|
|
|
|
|
|
|
9 |
import PIL
|
10 |
-
|
11 |
-
|
12 |
-
import diffusers
|
13 |
-
from diffusers.utils import load_image
|
14 |
from diffusers.models import ControlNetModel
|
15 |
-
|
16 |
-
import insightface
|
17 |
from insightface.app import FaceAnalysis
|
|
|
18 |
|
19 |
-
from style_template import styles
|
20 |
from pipeline_stable_diffusion_xl_instantid import StableDiffusionXLInstantIDPipeline
|
21 |
-
|
22 |
-
import gradio as gr
|
23 |
|
24 |
# global variable
|
25 |
MAX_SEED = np.iinfo(np.int32).max
|
@@ -29,22 +23,27 @@ DEFAULT_STYLE_NAME = "Watercolor"
|
|
29 |
|
30 |
# download checkpoints
|
31 |
from huggingface_hub import hf_hub_download
|
|
|
32 |
hf_hub_download(repo_id="InstantX/InstantID", filename="ControlNetModel/config.json", local_dir="./checkpoints")
|
33 |
-
hf_hub_download(
|
|
|
|
|
|
|
|
|
34 |
hf_hub_download(repo_id="InstantX/InstantID", filename="ip-adapter.bin", local_dir="./checkpoints")
|
35 |
|
36 |
# Load face encoder
|
37 |
-
app = FaceAnalysis(name=
|
38 |
app.prepare(ctx_id=0, det_size=(640, 640))
|
39 |
|
40 |
# Path to InstantID models
|
41 |
-
face_adapter =
|
42 |
-
controlnet_path =
|
43 |
|
44 |
# Load pipeline
|
45 |
controlnet = ControlNetModel.from_pretrained(controlnet_path, torch_dtype=torch.float16)
|
46 |
|
47 |
-
base_model_path =
|
48 |
|
49 |
pipe = StableDiffusionXLInstantIDPipeline.from_pretrained(
|
50 |
base_model_path,
|
@@ -55,54 +54,48 @@ pipe = StableDiffusionXLInstantIDPipeline.from_pretrained(
|
|
55 |
)
|
56 |
pipe.cuda()
|
57 |
pipe.load_ip_adapter_instantid(face_adapter)
|
58 |
-
pipe.image_proj_model.to(
|
59 |
-
pipe.unet.to(
|
|
|
60 |
|
61 |
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
62 |
if randomize_seed:
|
63 |
seed = random.randint(0, MAX_SEED)
|
64 |
return seed
|
65 |
|
66 |
-
def swap_to_gallery(images):
|
67 |
-
return gr.update(value=images, visible=True), gr.update(visible=True), gr.update(visible=False)
|
68 |
-
|
69 |
-
def upload_example_to_gallery(images, prompt, style, negative_prompt):
|
70 |
-
return gr.update(value=images, visible=True), gr.update(visible=True), gr.update(visible=False)
|
71 |
-
|
72 |
-
def remove_back_to_files():
|
73 |
-
return gr.update(visible=False), gr.update(visible=False), gr.update(visible=True)
|
74 |
|
75 |
def remove_tips():
|
76 |
return gr.update(visible=False)
|
77 |
|
|
|
78 |
def get_example():
|
79 |
case = [
|
80 |
[
|
81 |
-
|
82 |
"a man",
|
83 |
"Snow",
|
84 |
"(lowres, low quality, worst quality:1.2), (text:1.2), watermark, (frame:1.2), deformed, ugly, deformed eyes, blur, out of focus, blurry, deformed cat, deformed, photo, anthropomorphic cat, monochrome, photo, pet collar, gun, weapon, blue, 3d, drones, drone, buildings in background, green",
|
85 |
],
|
86 |
[
|
87 |
-
|
88 |
"a man",
|
89 |
"Mars",
|
90 |
"(lowres, low quality, worst quality:1.2), (text:1.2), watermark, (frame:1.2), deformed, ugly, deformed eyes, blur, out of focus, blurry, deformed cat, deformed, photo, anthropomorphic cat, monochrome, photo, pet collar, gun, weapon, blue, 3d, drones, drone, buildings in background, green",
|
91 |
],
|
92 |
[
|
93 |
-
|
94 |
"a man",
|
95 |
"Jungle",
|
96 |
"(lowres, low quality, worst quality:1.2), (text:1.2), watermark, (frame:1.2), deformed, ugly, deformed eyes, blur, out of focus, blurry, deformed cat, deformed, photo, anthropomorphic cat, monochrome, photo, pet collar, gun, weapon, blue, 3d, drones, drone, buildings in background, gree",
|
97 |
],
|
98 |
[
|
99 |
-
|
100 |
"a man",
|
101 |
"Neon",
|
102 |
"(lowres, low quality, worst quality:1.2), (text:1.2), watermark, (frame:1.2), deformed, ugly, deformed eyes, blur, out of focus, blurry, deformed cat, deformed, photo, anthropomorphic cat, monochrome, photo, pet collar, gun, weapon, blue, 3d, drones, drone, buildings in background, green",
|
103 |
],
|
104 |
[
|
105 |
-
|
106 |
"a man",
|
107 |
"Vibrant Color",
|
108 |
"(lowres, low quality, worst quality:1.2), (text:1.2), watermark, (frame:1.2), deformed, ugly, deformed eyes, blur, out of focus, blurry, deformed cat, deformed, photo, anthropomorphic cat, monochrome, photo, pet collar, gun, weapon, blue, 3d, drones, drone, buildings in background, green",
|
@@ -110,16 +103,20 @@ def get_example():
|
|
110 |
]
|
111 |
return case
|
112 |
|
113 |
-
|
114 |
-
|
|
|
|
|
115 |
|
116 |
def convert_from_cv2_to_image(img: np.ndarray) -> Image:
|
117 |
return Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
|
118 |
|
|
|
119 |
def convert_from_image_to_cv2(img: Image) -> np.ndarray:
|
120 |
return cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)
|
121 |
|
122 |
-
|
|
|
123 |
stickwidth = 4
|
124 |
limbSeq = np.array([[0, 2], [1, 2], [3, 2], [4, 2]])
|
125 |
kps = np.array(kps)
|
@@ -135,7 +132,9 @@ def draw_kps(image_pil, kps, color_list=[(255,0,0), (0,255,0), (0,0,255), (255,2
|
|
135 |
y = kps[index][:, 1]
|
136 |
length = ((x[0] - x[1]) ** 2 + (y[0] - y[1]) ** 2) ** 0.5
|
137 |
angle = math.degrees(math.atan2(y[0] - y[1], x[0] - x[1]))
|
138 |
-
polygon = cv2.ellipse2Poly(
|
|
|
|
|
139 |
out_img = cv2.fillConvexPoly(out_img.copy(), polygon, color)
|
140 |
out_img = (out_img * 0.6).astype(np.uint8)
|
141 |
|
@@ -147,89 +146,114 @@ def draw_kps(image_pil, kps, color_list=[(255,0,0), (0,255,0), (0,0,255), (255,2
|
|
147 |
out_img_pil = Image.fromarray(out_img.astype(np.uint8))
|
148 |
return out_img_pil
|
149 |
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
172 |
|
173 |
def apply_style(style_name: str, positive: str, negative: str = "") -> tuple[str, str]:
|
174 |
p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME])
|
175 |
-
return p.replace("{prompt}", positive), n +
|
176 |
|
177 |
-
@spaces.GPU
|
178 |
-
def generate_image(face_image, pose_image, prompt, negative_prompt, style_name, enhance_face_region, num_steps, identitynet_strength_ratio, adapter_strength_ratio, guidance_scale, seed, progress=gr.Progress(track_tqdm=True)):
|
179 |
|
|
|
180 |
if face_image is None:
|
181 |
-
raise gr.Error(
|
182 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
183 |
if prompt is None:
|
184 |
prompt = "a person"
|
185 |
-
|
186 |
# apply the style template
|
187 |
prompt, negative_prompt = apply_style(style_name, prompt, negative_prompt)
|
188 |
-
|
189 |
-
face_image = load_image(
|
190 |
face_image = resize_img(face_image)
|
191 |
face_image_cv2 = convert_from_image_to_cv2(face_image)
|
192 |
height, width, _ = face_image_cv2.shape
|
193 |
-
|
194 |
# Extract face features
|
195 |
face_info = app.get(face_image_cv2)
|
196 |
-
|
197 |
if len(face_info) == 0:
|
198 |
-
raise gr.Error(
|
199 |
-
|
200 |
-
face_info = sorted(face_info, key=lambda x:(x[
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
|
|
|
|
206 |
pose_image = resize_img(pose_image)
|
207 |
pose_image_cv2 = convert_from_image_to_cv2(pose_image)
|
208 |
-
|
209 |
face_info = app.get(pose_image_cv2)
|
210 |
-
|
211 |
if len(face_info) == 0:
|
212 |
-
raise gr.Error(
|
213 |
-
|
214 |
face_info = face_info[-1]
|
215 |
-
face_kps = draw_kps(pose_image, face_info[
|
216 |
-
|
217 |
width, height = face_kps.size
|
218 |
-
|
219 |
if enhance_face_region:
|
220 |
control_mask = np.zeros([height, width, 3])
|
221 |
-
x1, y1, x2, y2 = face_info[
|
222 |
x1, y1, x2, y2 = int(x1), int(y1), int(x2), int(y2)
|
223 |
control_mask[y1:y2, x1:x2] = 255
|
224 |
control_mask = Image.fromarray(control_mask.astype(np.uint8))
|
225 |
else:
|
226 |
control_mask = None
|
227 |
-
|
228 |
generator = torch.Generator(device=device).manual_seed(seed)
|
229 |
-
|
230 |
print("Start inference...")
|
231 |
print(f"[Debug] Prompt: {prompt}, \n[Debug] Neg Prompt: {negative_prompt}")
|
232 |
-
|
233 |
pipe.set_ip_adapter_scale(adapter_strength_ratio)
|
234 |
images = pipe(
|
235 |
prompt=prompt,
|
@@ -242,10 +266,11 @@ def generate_image(face_image, pose_image, prompt, negative_prompt, style_name,
|
|
242 |
guidance_scale=guidance_scale,
|
243 |
height=height,
|
244 |
width=width,
|
245 |
-
generator=generator
|
246 |
).images
|
247 |
|
248 |
-
return images, gr.update(visible=True)
|
|
|
249 |
|
250 |
### Description
|
251 |
title = r"""
|
@@ -289,46 +314,34 @@ tips = r"""
|
|
289 |
4. Find a good base model always makes a difference.
|
290 |
"""
|
291 |
|
292 |
-
css =
|
293 |
.gradio-container {width: 85% !important}
|
294 |
-
|
295 |
with gr.Blocks(css=css) as demo:
|
296 |
-
|
297 |
# description
|
298 |
gr.Markdown(title)
|
299 |
gr.Markdown(description)
|
300 |
|
301 |
with gr.Row():
|
302 |
with gr.Column():
|
303 |
-
|
304 |
# upload face image
|
305 |
-
|
306 |
-
|
307 |
-
file_types=["image"]
|
308 |
-
)
|
309 |
-
uploaded_faces = gr.Gallery(label="Your images", visible=False, columns=1, rows=1, height=512)
|
310 |
-
with gr.Column(visible=False) as clear_button_face:
|
311 |
-
remove_and_reupload_faces = gr.ClearButton(value="Remove and upload new ones", components=face_files, size="sm")
|
312 |
-
|
313 |
# optional: upload a reference pose image
|
314 |
-
|
315 |
-
|
316 |
-
file_types=["image"]
|
317 |
-
)
|
318 |
-
uploaded_poses = gr.Gallery(label="Your images", visible=False, columns=1, rows=1, height=512)
|
319 |
-
with gr.Column(visible=False) as clear_button_pose:
|
320 |
-
remove_and_reupload_poses = gr.ClearButton(value="Remove and upload new ones", components=pose_files, size="sm")
|
321 |
-
|
322 |
# prompt
|
323 |
-
prompt = gr.Textbox(
|
324 |
-
|
325 |
-
|
326 |
-
|
327 |
-
|
|
|
|
|
328 |
submit = gr.Button("Submit", variant="primary")
|
329 |
-
|
330 |
style = gr.Dropdown(label="Style template", choices=STYLE_NAMES, value=DEFAULT_STYLE_NAME)
|
331 |
-
|
332 |
# strength
|
333 |
identitynet_strength_ratio = gr.Slider(
|
334 |
label="IdentityNet strength (for fedility)",
|
@@ -344,14 +357,14 @@ with gr.Blocks(css=css) as demo:
|
|
344 |
step=0.05,
|
345 |
value=0.80,
|
346 |
)
|
347 |
-
|
348 |
with gr.Accordion(open=False, label="Advanced Options"):
|
349 |
negative_prompt = gr.Textbox(
|
350 |
-
label="Negative Prompt",
|
351 |
placeholder="low quality",
|
352 |
value="(lowres, low quality, worst quality:1.2), (text:1.2), watermark, (frame:1.2), deformed, ugly, deformed eyes, blur, out of focus, blurry, deformed cat, deformed, photo, anthropomorphic cat, monochrome, pet collar, gun, weapon, blue, 3d, drones, drone, buildings in background, green",
|
353 |
)
|
354 |
-
num_steps = gr.Slider(
|
355 |
label="Number of sample steps",
|
356 |
minimum=20,
|
357 |
maximum=100,
|
@@ -376,18 +389,14 @@ with gr.Blocks(css=css) as demo:
|
|
376 |
enhance_face_region = gr.Checkbox(label="Enhance non-face region", value=True)
|
377 |
|
378 |
with gr.Column():
|
379 |
-
|
380 |
-
usage_tips = gr.Markdown(label="Usage tips of InstantID", value=tips
|
381 |
-
|
382 |
-
face_files.upload(fn=swap_to_gallery, inputs=face_files, outputs=[uploaded_faces, clear_button_face, face_files])
|
383 |
-
pose_files.upload(fn=swap_to_gallery, inputs=pose_files, outputs=[uploaded_poses, clear_button_pose, pose_files])
|
384 |
-
|
385 |
-
remove_and_reupload_faces.click(fn=remove_back_to_files, outputs=[uploaded_faces, clear_button_face, face_files])
|
386 |
-
remove_and_reupload_poses.click(fn=remove_back_to_files, outputs=[uploaded_poses, clear_button_pose, pose_files])
|
387 |
|
388 |
submit.click(
|
389 |
fn=remove_tips,
|
390 |
-
outputs=usage_tips,
|
|
|
|
|
391 |
).then(
|
392 |
fn=randomize_seed_fn,
|
393 |
inputs=[seed, randomize_seed],
|
@@ -395,22 +404,37 @@ with gr.Blocks(css=css) as demo:
|
|
395 |
queue=False,
|
396 |
api_name=False,
|
397 |
).then(
|
|
|
|
|
|
|
|
|
|
|
398 |
fn=generate_image,
|
399 |
-
inputs=[
|
400 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
401 |
)
|
402 |
-
|
403 |
gr.Examples(
|
404 |
examples=get_example(),
|
405 |
-
inputs=[
|
406 |
-
|
407 |
-
fn=
|
408 |
-
|
409 |
-
cache_examples=True
|
410 |
)
|
411 |
-
|
412 |
-
gr.Markdown(article)
|
413 |
|
|
|
414 |
|
415 |
demo.queue(api_open=False)
|
416 |
-
demo.launch()
|
|
|
|
|
|
|
1 |
import math
|
|
|
|
|
2 |
import random
|
|
|
3 |
|
4 |
+
import cv2
|
5 |
+
import gradio as gr
|
6 |
+
import numpy as np
|
7 |
import PIL
|
8 |
+
import spaces
|
9 |
+
import torch
|
|
|
|
|
10 |
from diffusers.models import ControlNetModel
|
11 |
+
from diffusers.utils import load_image
|
|
|
12 |
from insightface.app import FaceAnalysis
|
13 |
+
from PIL import Image
|
14 |
|
|
|
15 |
from pipeline_stable_diffusion_xl_instantid import StableDiffusionXLInstantIDPipeline
|
16 |
+
from style_template import styles
|
|
|
17 |
|
18 |
# global variable
|
19 |
MAX_SEED = np.iinfo(np.int32).max
|
|
|
23 |
|
24 |
# download checkpoints
|
25 |
from huggingface_hub import hf_hub_download
|
26 |
+
|
27 |
hf_hub_download(repo_id="InstantX/InstantID", filename="ControlNetModel/config.json", local_dir="./checkpoints")
|
28 |
+
hf_hub_download(
|
29 |
+
repo_id="InstantX/InstantID",
|
30 |
+
filename="ControlNetModel/diffusion_pytorch_model.safetensors",
|
31 |
+
local_dir="./checkpoints",
|
32 |
+
)
|
33 |
hf_hub_download(repo_id="InstantX/InstantID", filename="ip-adapter.bin", local_dir="./checkpoints")
|
34 |
|
35 |
# Load face encoder
|
36 |
+
app = FaceAnalysis(name="antelopev2", root="./", providers=["CPUExecutionProvider"])
|
37 |
app.prepare(ctx_id=0, det_size=(640, 640))
|
38 |
|
39 |
# Path to InstantID models
|
40 |
+
face_adapter = "./checkpoints/ip-adapter.bin"
|
41 |
+
controlnet_path = "./checkpoints/ControlNetModel"
|
42 |
|
43 |
# Load pipeline
|
44 |
controlnet = ControlNetModel.from_pretrained(controlnet_path, torch_dtype=torch.float16)
|
45 |
|
46 |
+
base_model_path = "wangqixun/YamerMIX_v8"
|
47 |
|
48 |
pipe = StableDiffusionXLInstantIDPipeline.from_pretrained(
|
49 |
base_model_path,
|
|
|
54 |
)
|
55 |
pipe.cuda()
|
56 |
pipe.load_ip_adapter_instantid(face_adapter)
|
57 |
+
pipe.image_proj_model.to("cuda")
|
58 |
+
pipe.unet.to("cuda")
|
59 |
+
|
60 |
|
61 |
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
62 |
if randomize_seed:
|
63 |
seed = random.randint(0, MAX_SEED)
|
64 |
return seed
|
65 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
|
67 |
def remove_tips():
|
68 |
return gr.update(visible=False)
|
69 |
|
70 |
+
|
71 |
def get_example():
|
72 |
case = [
|
73 |
[
|
74 |
+
"./examples/yann-lecun_resize.jpg",
|
75 |
"a man",
|
76 |
"Snow",
|
77 |
"(lowres, low quality, worst quality:1.2), (text:1.2), watermark, (frame:1.2), deformed, ugly, deformed eyes, blur, out of focus, blurry, deformed cat, deformed, photo, anthropomorphic cat, monochrome, photo, pet collar, gun, weapon, blue, 3d, drones, drone, buildings in background, green",
|
78 |
],
|
79 |
[
|
80 |
+
"./examples/musk_resize.jpeg",
|
81 |
"a man",
|
82 |
"Mars",
|
83 |
"(lowres, low quality, worst quality:1.2), (text:1.2), watermark, (frame:1.2), deformed, ugly, deformed eyes, blur, out of focus, blurry, deformed cat, deformed, photo, anthropomorphic cat, monochrome, photo, pet collar, gun, weapon, blue, 3d, drones, drone, buildings in background, green",
|
84 |
],
|
85 |
[
|
86 |
+
"./examples/sam_resize.png",
|
87 |
"a man",
|
88 |
"Jungle",
|
89 |
"(lowres, low quality, worst quality:1.2), (text:1.2), watermark, (frame:1.2), deformed, ugly, deformed eyes, blur, out of focus, blurry, deformed cat, deformed, photo, anthropomorphic cat, monochrome, photo, pet collar, gun, weapon, blue, 3d, drones, drone, buildings in background, gree",
|
90 |
],
|
91 |
[
|
92 |
+
"./examples/schmidhuber_resize.png",
|
93 |
"a man",
|
94 |
"Neon",
|
95 |
"(lowres, low quality, worst quality:1.2), (text:1.2), watermark, (frame:1.2), deformed, ugly, deformed eyes, blur, out of focus, blurry, deformed cat, deformed, photo, anthropomorphic cat, monochrome, photo, pet collar, gun, weapon, blue, 3d, drones, drone, buildings in background, green",
|
96 |
],
|
97 |
[
|
98 |
+
"./examples/kaifu_resize.png",
|
99 |
"a man",
|
100 |
"Vibrant Color",
|
101 |
"(lowres, low quality, worst quality:1.2), (text:1.2), watermark, (frame:1.2), deformed, ugly, deformed eyes, blur, out of focus, blurry, deformed cat, deformed, photo, anthropomorphic cat, monochrome, photo, pet collar, gun, weapon, blue, 3d, drones, drone, buildings in background, green",
|
|
|
103 |
]
|
104 |
return case
|
105 |
|
106 |
+
|
107 |
+
def run_for_examples(face_file, prompt, style, negative_prompt):
|
108 |
+
return generate_image(face_file, None, prompt, negative_prompt, style, True, 30, 0.8, 0.8, 5, 42)
|
109 |
+
|
110 |
|
111 |
def convert_from_cv2_to_image(img: np.ndarray) -> Image:
|
112 |
return Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
|
113 |
|
114 |
+
|
115 |
def convert_from_image_to_cv2(img: Image) -> np.ndarray:
|
116 |
return cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)
|
117 |
|
118 |
+
|
119 |
+
def draw_kps(image_pil, kps, color_list=[(255, 0, 0), (0, 255, 0), (0, 0, 255), (255, 255, 0), (255, 0, 255)]):
|
120 |
stickwidth = 4
|
121 |
limbSeq = np.array([[0, 2], [1, 2], [3, 2], [4, 2]])
|
122 |
kps = np.array(kps)
|
|
|
132 |
y = kps[index][:, 1]
|
133 |
length = ((x[0] - x[1]) ** 2 + (y[0] - y[1]) ** 2) ** 0.5
|
134 |
angle = math.degrees(math.atan2(y[0] - y[1], x[0] - x[1]))
|
135 |
+
polygon = cv2.ellipse2Poly(
|
136 |
+
(int(np.mean(x)), int(np.mean(y))), (int(length / 2), stickwidth), int(angle), 0, 360, 1
|
137 |
+
)
|
138 |
out_img = cv2.fillConvexPoly(out_img.copy(), polygon, color)
|
139 |
out_img = (out_img * 0.6).astype(np.uint8)
|
140 |
|
|
|
146 |
out_img_pil = Image.fromarray(out_img.astype(np.uint8))
|
147 |
return out_img_pil
|
148 |
|
149 |
+
|
150 |
+
def resize_img(
|
151 |
+
input_image,
|
152 |
+
max_side=1280,
|
153 |
+
min_side=1024,
|
154 |
+
size=None,
|
155 |
+
pad_to_max_side=False,
|
156 |
+
mode=PIL.Image.BILINEAR,
|
157 |
+
base_pixel_number=64,
|
158 |
+
):
|
159 |
+
w, h = input_image.size
|
160 |
+
if size is not None:
|
161 |
+
w_resize_new, h_resize_new = size
|
162 |
+
else:
|
163 |
+
ratio = min_side / min(h, w)
|
164 |
+
w, h = round(ratio * w), round(ratio * h)
|
165 |
+
ratio = max_side / max(h, w)
|
166 |
+
input_image = input_image.resize([round(ratio * w), round(ratio * h)], mode)
|
167 |
+
w_resize_new = (round(ratio * w) // base_pixel_number) * base_pixel_number
|
168 |
+
h_resize_new = (round(ratio * h) // base_pixel_number) * base_pixel_number
|
169 |
+
input_image = input_image.resize([w_resize_new, h_resize_new], mode)
|
170 |
+
|
171 |
+
if pad_to_max_side:
|
172 |
+
res = np.ones([max_side, max_side, 3], dtype=np.uint8) * 255
|
173 |
+
offset_x = (max_side - w_resize_new) // 2
|
174 |
+
offset_y = (max_side - h_resize_new) // 2
|
175 |
+
res[offset_y : offset_y + h_resize_new, offset_x : offset_x + w_resize_new] = np.array(input_image)
|
176 |
+
input_image = Image.fromarray(res)
|
177 |
+
return input_image
|
178 |
+
|
179 |
|
180 |
def apply_style(style_name: str, positive: str, negative: str = "") -> tuple[str, str]:
|
181 |
p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME])
|
182 |
+
return p.replace("{prompt}", positive), n + " " + negative
|
183 |
|
|
|
|
|
184 |
|
185 |
+
def check_input_image(face_image):
|
186 |
if face_image is None:
|
187 |
+
raise gr.Error("Cannot find any input face image! Please upload the face image")
|
188 |
+
|
189 |
+
|
190 |
+
@spaces.GPU
|
191 |
+
def generate_image(
|
192 |
+
face_image_path,
|
193 |
+
pose_image_path,
|
194 |
+
prompt,
|
195 |
+
negative_prompt,
|
196 |
+
style_name,
|
197 |
+
enhance_face_region,
|
198 |
+
num_steps,
|
199 |
+
identitynet_strength_ratio,
|
200 |
+
adapter_strength_ratio,
|
201 |
+
guidance_scale,
|
202 |
+
seed,
|
203 |
+
progress=gr.Progress(track_tqdm=True),
|
204 |
+
):
|
205 |
if prompt is None:
|
206 |
prompt = "a person"
|
207 |
+
|
208 |
# apply the style template
|
209 |
prompt, negative_prompt = apply_style(style_name, prompt, negative_prompt)
|
210 |
+
|
211 |
+
face_image = load_image(face_image_path)
|
212 |
face_image = resize_img(face_image)
|
213 |
face_image_cv2 = convert_from_image_to_cv2(face_image)
|
214 |
height, width, _ = face_image_cv2.shape
|
215 |
+
|
216 |
# Extract face features
|
217 |
face_info = app.get(face_image_cv2)
|
218 |
+
|
219 |
if len(face_info) == 0:
|
220 |
+
raise gr.Error("Cannot find any face in the image! Please upload another person image")
|
221 |
+
|
222 |
+
face_info = sorted(face_info, key=lambda x: (x["bbox"][2] - x["bbox"][0]) * x["bbox"][3] - x["bbox"][1])[
|
223 |
+
-1
|
224 |
+
] # only use the maximum face
|
225 |
+
face_emb = face_info["embedding"]
|
226 |
+
face_kps = draw_kps(convert_from_cv2_to_image(face_image_cv2), face_info["kps"])
|
227 |
+
|
228 |
+
if pose_image_path is not None:
|
229 |
+
pose_image = load_image(pose_image_path)
|
230 |
pose_image = resize_img(pose_image)
|
231 |
pose_image_cv2 = convert_from_image_to_cv2(pose_image)
|
232 |
+
|
233 |
face_info = app.get(pose_image_cv2)
|
234 |
+
|
235 |
if len(face_info) == 0:
|
236 |
+
raise gr.Error("Cannot find any face in the reference image! Please upload another person image")
|
237 |
+
|
238 |
face_info = face_info[-1]
|
239 |
+
face_kps = draw_kps(pose_image, face_info["kps"])
|
240 |
+
|
241 |
width, height = face_kps.size
|
242 |
+
|
243 |
if enhance_face_region:
|
244 |
control_mask = np.zeros([height, width, 3])
|
245 |
+
x1, y1, x2, y2 = face_info["bbox"]
|
246 |
x1, y1, x2, y2 = int(x1), int(y1), int(x2), int(y2)
|
247 |
control_mask[y1:y2, x1:x2] = 255
|
248 |
control_mask = Image.fromarray(control_mask.astype(np.uint8))
|
249 |
else:
|
250 |
control_mask = None
|
251 |
+
|
252 |
generator = torch.Generator(device=device).manual_seed(seed)
|
253 |
+
|
254 |
print("Start inference...")
|
255 |
print(f"[Debug] Prompt: {prompt}, \n[Debug] Neg Prompt: {negative_prompt}")
|
256 |
+
|
257 |
pipe.set_ip_adapter_scale(adapter_strength_ratio)
|
258 |
images = pipe(
|
259 |
prompt=prompt,
|
|
|
266 |
guidance_scale=guidance_scale,
|
267 |
height=height,
|
268 |
width=width,
|
269 |
+
generator=generator,
|
270 |
).images
|
271 |
|
272 |
+
return images[0], gr.update(visible=True)
|
273 |
+
|
274 |
|
275 |
### Description
|
276 |
title = r"""
|
|
|
314 |
4. Find a good base model always makes a difference.
|
315 |
"""
|
316 |
|
317 |
+
css = """
|
318 |
.gradio-container {width: 85% !important}
|
319 |
+
"""
|
320 |
with gr.Blocks(css=css) as demo:
|
|
|
321 |
# description
|
322 |
gr.Markdown(title)
|
323 |
gr.Markdown(description)
|
324 |
|
325 |
with gr.Row():
|
326 |
with gr.Column():
|
|
|
327 |
# upload face image
|
328 |
+
face_file = gr.Image(label="Upload a photo of your face", type="filepath")
|
329 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
330 |
# optional: upload a reference pose image
|
331 |
+
pose_file = gr.Image(label="Upload a reference pose image (optional)", type="filepath")
|
332 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
333 |
# prompt
|
334 |
+
prompt = gr.Textbox(
|
335 |
+
label="Prompt",
|
336 |
+
info="Give simple prompt is enough to achieve good face fedility",
|
337 |
+
placeholder="A photo of a person",
|
338 |
+
value="",
|
339 |
+
)
|
340 |
+
|
341 |
submit = gr.Button("Submit", variant="primary")
|
342 |
+
|
343 |
style = gr.Dropdown(label="Style template", choices=STYLE_NAMES, value=DEFAULT_STYLE_NAME)
|
344 |
+
|
345 |
# strength
|
346 |
identitynet_strength_ratio = gr.Slider(
|
347 |
label="IdentityNet strength (for fedility)",
|
|
|
357 |
step=0.05,
|
358 |
value=0.80,
|
359 |
)
|
360 |
+
|
361 |
with gr.Accordion(open=False, label="Advanced Options"):
|
362 |
negative_prompt = gr.Textbox(
|
363 |
+
label="Negative Prompt",
|
364 |
placeholder="low quality",
|
365 |
value="(lowres, low quality, worst quality:1.2), (text:1.2), watermark, (frame:1.2), deformed, ugly, deformed eyes, blur, out of focus, blurry, deformed cat, deformed, photo, anthropomorphic cat, monochrome, pet collar, gun, weapon, blue, 3d, drones, drone, buildings in background, green",
|
366 |
)
|
367 |
+
num_steps = gr.Slider(
|
368 |
label="Number of sample steps",
|
369 |
minimum=20,
|
370 |
maximum=100,
|
|
|
389 |
enhance_face_region = gr.Checkbox(label="Enhance non-face region", value=True)
|
390 |
|
391 |
with gr.Column():
|
392 |
+
output_image = gr.Image(label="Generated Image")
|
393 |
+
usage_tips = gr.Markdown(label="Usage tips of InstantID", value=tips, visible=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
394 |
|
395 |
submit.click(
|
396 |
fn=remove_tips,
|
397 |
+
outputs=usage_tips,
|
398 |
+
queue=False,
|
399 |
+
api_name=False,
|
400 |
).then(
|
401 |
fn=randomize_seed_fn,
|
402 |
inputs=[seed, randomize_seed],
|
|
|
404 |
queue=False,
|
405 |
api_name=False,
|
406 |
).then(
|
407 |
+
fn=check_input_image,
|
408 |
+
inputs=face_file,
|
409 |
+
queue=False,
|
410 |
+
api_name=False,
|
411 |
+
).success(
|
412 |
fn=generate_image,
|
413 |
+
inputs=[
|
414 |
+
face_file,
|
415 |
+
pose_file,
|
416 |
+
prompt,
|
417 |
+
negative_prompt,
|
418 |
+
style,
|
419 |
+
enhance_face_region,
|
420 |
+
num_steps,
|
421 |
+
identitynet_strength_ratio,
|
422 |
+
adapter_strength_ratio,
|
423 |
+
guidance_scale,
|
424 |
+
seed,
|
425 |
+
],
|
426 |
+
outputs=[output_image, usage_tips],
|
427 |
)
|
428 |
+
|
429 |
gr.Examples(
|
430 |
examples=get_example(),
|
431 |
+
inputs=[face_file, prompt, style, negative_prompt],
|
432 |
+
outputs=[output_image, usage_tips],
|
433 |
+
fn=run_for_examples,
|
434 |
+
cache_examples=True,
|
|
|
435 |
)
|
|
|
|
|
436 |
|
437 |
+
gr.Markdown(article)
|
438 |
|
439 |
demo.queue(api_open=False)
|
440 |
+
demo.launch()
|
gradio_cached_examples/25/Generated Image/2880a3d19ef9b42e3ed2/image.png
ADDED
Git LFS Details
|
gradio_cached_examples/25/Generated Image/38dde1388c41109c5d39/image.png
ADDED
Git LFS Details
|
gradio_cached_examples/25/Generated Image/6cb5a3af223906666bfd/image.png
ADDED
Git LFS Details
|
gradio_cached_examples/25/Generated Image/7e6ea85f77dd925d842c/image.png
ADDED
Git LFS Details
|
gradio_cached_examples/25/Generated Image/e56b029833685ff77e6a/image.png
ADDED
Git LFS Details
|
gradio_cached_examples/25/log.csv
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Generated Image,Usage tips of InstantID,flag,username,timestamp
|
2 |
+
"{""path"":""gradio_cached_examples/25/Generated Image/7e6ea85f77dd925d842c/image.png"",""url"":null,""size"":null,""orig_name"":""image.png"",""mime_type"":null}","{'visible': True, '__type__': 'update'}",,,2024-01-24 08:55:38.846769
|
3 |
+
"{""path"":""gradio_cached_examples/25/Generated Image/2880a3d19ef9b42e3ed2/image.png"",""url"":null,""size"":null,""orig_name"":""image.png"",""mime_type"":null}","{'visible': True, '__type__': 'update'}",,,2024-01-24 08:56:11.432078
|
4 |
+
"{""path"":""gradio_cached_examples/25/Generated Image/38dde1388c41109c5d39/image.png"",""url"":null,""size"":null,""orig_name"":""image.png"",""mime_type"":null}","{'visible': True, '__type__': 'update'}",,,2024-01-24 08:56:45.563918
|
5 |
+
"{""path"":""gradio_cached_examples/25/Generated Image/e56b029833685ff77e6a/image.png"",""url"":null,""size"":null,""orig_name"":""image.png"",""mime_type"":null}","{'visible': True, '__type__': 'update'}",,,2024-01-24 08:57:20.321876
|
6 |
+
"{""path"":""gradio_cached_examples/25/Generated Image/6cb5a3af223906666bfd/image.png"",""url"":null,""size"":null,""orig_name"":""image.png"",""mime_type"":null}","{'visible': True, '__type__': 'update'}",,,2024-01-24 08:57:53.871716
|