benibraz's picture
different tabs for different functionality
fc65614
raw
history blame
16.2 kB
import gradio as gr
import torch
from huggingface_hub import snapshot_download
from xora.models.autoencoders.causal_video_autoencoder import CausalVideoAutoencoder
from xora.models.transformers.transformer3d import Transformer3DModel
from xora.models.transformers.symmetric_patchifier import SymmetricPatchifier
from xora.schedulers.rf import RectifiedFlowScheduler
from xora.pipelines.pipeline_xora_video import XoraVideoPipeline
from transformers import T5EncoderModel, T5Tokenizer
from xora.utils.conditioning_method import ConditioningMethod
from pathlib import Path
import safetensors.torch
import json
import numpy as np
import cv2
from PIL import Image
import tempfile
import os
# Load Hugging Face token if needed
hf_token = os.getenv("HF_TOKEN")
# Set model download directory within Hugging Face Spaces
model_path = "asset"
if not os.path.exists(model_path):
snapshot_download(
"Lightricks/LTX-Video", local_dir=model_path, repo_type="model", token=hf_token
)
# Global variables to load components
vae_dir = Path(model_path) / "vae"
unet_dir = Path(model_path) / "unet"
scheduler_dir = Path(model_path) / "scheduler"
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def load_vae(vae_dir):
vae_ckpt_path = vae_dir / "vae_diffusion_pytorch_model.safetensors"
vae_config_path = vae_dir / "config.json"
with open(vae_config_path, "r") as f:
vae_config = json.load(f)
vae = CausalVideoAutoencoder.from_config(vae_config)
vae_state_dict = safetensors.torch.load_file(vae_ckpt_path)
vae.load_state_dict(vae_state_dict)
return vae.cuda().to(torch.bfloat16)
def load_unet(unet_dir):
unet_ckpt_path = unet_dir / "unet_diffusion_pytorch_model.safetensors"
unet_config_path = unet_dir / "config.json"
transformer_config = Transformer3DModel.load_config(unet_config_path)
transformer = Transformer3DModel.from_config(transformer_config)
unet_state_dict = safetensors.torch.load_file(unet_ckpt_path)
transformer.load_state_dict(unet_state_dict, strict=True)
return transformer.to(device)
def load_scheduler(scheduler_dir):
scheduler_config_path = scheduler_dir / "scheduler_config.json"
scheduler_config = RectifiedFlowScheduler.load_config(scheduler_config_path)
return RectifiedFlowScheduler.from_config(scheduler_config)
# Helper function for image processing
def center_crop_and_resize(frame, target_height, target_width):
h, w, _ = frame.shape
aspect_ratio_target = target_width / target_height
aspect_ratio_frame = w / h
if aspect_ratio_frame > aspect_ratio_target:
new_width = int(h * aspect_ratio_target)
x_start = (w - new_width) // 2
frame_cropped = frame[:, x_start : x_start + new_width]
else:
new_height = int(w / aspect_ratio_target)
y_start = (h - new_height) // 2
frame_cropped = frame[y_start : y_start + new_height, :]
frame_resized = cv2.resize(frame_cropped, (target_width, target_height))
return frame_resized
def load_image_to_tensor_with_resize(image_path, target_height=512, target_width=768):
image = Image.open(image_path).convert("RGB")
image_np = np.array(image)
frame_resized = center_crop_and_resize(image_np, target_height, target_width)
frame_tensor = torch.tensor(frame_resized).permute(2, 0, 1).float()
frame_tensor = (frame_tensor / 127.5) - 1.0
return frame_tensor.unsqueeze(0).unsqueeze(2)
# Preset options for resolution and frame configuration
preset_options = [
{"label": "1216x704, 41 frames", "width": 1216, "height": 704, "num_frames": 41},
{"label": "1088x704, 49 frames", "width": 1088, "height": 704, "num_frames": 49},
{"label": "1056x640, 57 frames", "width": 1056, "height": 640, "num_frames": 57},
{"label": "992x608, 65 frames", "width": 992, "height": 608, "num_frames": 65},
{"label": "896x608, 73 frames", "width": 896, "height": 608, "num_frames": 73},
{"label": "896x544, 81 frames", "width": 896, "height": 544, "num_frames": 81},
{"label": "832x544, 89 frames", "width": 832, "height": 544, "num_frames": 89},
{"label": "800x512, 97 frames", "width": 800, "height": 512, "num_frames": 97},
{"label": "768x512, 97 frames", "width": 768, "height": 512, "num_frames": 97},
{"label": "800x480, 105 frames", "width": 800, "height": 480, "num_frames": 105},
{"label": "736x480, 113 frames", "width": 736, "height": 480, "num_frames": 113},
{"label": "704x480, 121 frames", "width": 704, "height": 480, "num_frames": 121},
{"label": "704x448, 129 frames", "width": 704, "height": 448, "num_frames": 129},
{"label": "672x448, 137 frames", "width": 672, "height": 448, "num_frames": 137},
{"label": "640x416, 153 frames", "width": 640, "height": 416, "num_frames": 153},
{"label": "672x384, 161 frames", "width": 672, "height": 384, "num_frames": 161},
{"label": "640x384, 169 frames", "width": 640, "height": 384, "num_frames": 169},
{"label": "608x384, 177 frames", "width": 608, "height": 384, "num_frames": 177},
{"label": "576x384, 185 frames", "width": 576, "height": 384, "num_frames": 185},
{"label": "608x352, 193 frames", "width": 608, "height": 352, "num_frames": 193},
{"label": "576x352, 201 frames", "width": 576, "height": 352, "num_frames": 201},
{"label": "544x352, 209 frames", "width": 544, "height": 352, "num_frames": 209},
{"label": "512x352, 225 frames", "width": 512, "height": 352, "num_frames": 225},
{"label": "512x352, 233 frames", "width": 512, "height": 352, "num_frames": 233},
{"label": "544x320, 241 frames", "width": 544, "height": 320, "num_frames": 241},
{"label": "512x320, 249 frames", "width": 512, "height": 320, "num_frames": 249},
{"label": "512x320, 257 frames", "width": 512, "height": 320, "num_frames": 257},
{"label": "Custom", "height": None, "width": None, "num_frames": None},
]
# Function to toggle visibility of sliders based on preset selection
def preset_changed(preset):
if preset != "Custom":
selected = next(item for item in preset_options if item["label"] == preset)
return (
selected["height"],
selected["width"],
selected["num_frames"],
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False),
)
else:
return (
None,
None,
None,
gr.update(visible=True),
gr.update(visible=True),
gr.update(visible=True),
)
# Load models
vae = load_vae(vae_dir)
unet = load_unet(unet_dir)
scheduler = load_scheduler(scheduler_dir)
patchifier = SymmetricPatchifier(patch_size=1)
text_encoder = T5EncoderModel.from_pretrained(
"PixArt-alpha/PixArt-XL-2-1024-MS", subfolder="text_encoder"
).to(device)
tokenizer = T5Tokenizer.from_pretrained(
"PixArt-alpha/PixArt-XL-2-1024-MS", subfolder="tokenizer"
)
pipeline = XoraVideoPipeline(
transformer=unet,
patchifier=patchifier,
text_encoder=text_encoder,
tokenizer=tokenizer,
scheduler=scheduler,
vae=vae,
).to(device)
import gradio as gr
import torch
from huggingface_hub import snapshot_download
# [Previous imports remain the same...]
def generate_video_from_text(
prompt="",
negative_prompt="",
seed=171198,
num_inference_steps=40,
num_images_per_prompt=1,
guidance_scale=3,
height=512,
width=768,
num_frames=121,
frame_rate=25,
progress=gr.Progress(),
):
if len(prompt.strip()) < 50:
raise gr.Error(
"Prompt must be at least 50 characters long. Please provide more details for the best results.",
duration=5,
)
sample = {
"prompt": prompt,
"prompt_attention_mask": None,
"negative_prompt": negative_prompt,
"negative_prompt_attention_mask": None,
"media_items": None,
}
generator = torch.Generator(device="cpu").manual_seed(seed)
def gradio_progress_callback(self, step, timestep, kwargs):
progress((step + 1) / num_inference_steps)
images = pipeline(
num_inference_steps=num_inference_steps,
num_images_per_prompt=num_images_per_prompt,
guidance_scale=guidance_scale,
generator=generator,
output_type="pt",
height=height,
width=width,
num_frames=num_frames,
frame_rate=frame_rate,
**sample,
is_video=True,
vae_per_channel_normalize=True,
conditioning_method=ConditioningMethod.FIRST_FRAME,
mixed_precision=True,
callback_on_step_end=gradio_progress_callback,
).images
output_path = tempfile.mktemp(suffix=".mp4")
video_np = images.squeeze(0).permute(1, 2, 3, 0).cpu().float().numpy()
video_np = (video_np * 255).astype(np.uint8)
height, width = video_np.shape[1:3]
out = cv2.VideoWriter(
output_path, cv2.VideoWriter_fourcc(*"mp4v"), frame_rate, (width, height)
)
for frame in video_np[..., ::-1]:
out.write(frame)
out.release()
return output_path
def generate_video_from_image(
image_path,
prompt="",
negative_prompt="",
seed=171198,
num_inference_steps=40,
num_images_per_prompt=1,
guidance_scale=3,
height=512,
width=768,
num_frames=121,
frame_rate=25,
progress=gr.Progress(),
):
if len(prompt.strip()) < 50:
raise gr.Error(
"Prompt must be at least 50 characters long. Please provide more details for the best results.",
duration=5,
)
if not image_path:
raise gr.Error("Please provide an input image.", duration=5)
media_items = load_image_to_tensor_with_resize(image_path, height, width).to(device)
sample = {
"prompt": prompt,
"prompt_attention_mask": None,
"negative_prompt": negative_prompt,
"negative_prompt_attention_mask": None,
"media_items": media_items,
}
generator = torch.Generator(device="cpu").manual_seed(seed)
def gradio_progress_callback(self, step, timestep, kwargs):
progress((step + 1) / num_inference_steps)
images = pipeline(
num_inference_steps=num_inference_steps,
num_images_per_prompt=num_images_per_prompt,
guidance_scale=guidance_scale,
generator=generator,
output_type="pt",
height=height,
width=width,
num_frames=num_frames,
frame_rate=frame_rate,
**sample,
is_video=True,
vae_per_channel_normalize=True,
conditioning_method=ConditioningMethod.FIRST_FRAME,
mixed_precision=True,
callback_on_step_end=gradio_progress_callback,
).images
output_path = tempfile.mktemp(suffix=".mp4")
video_np = images.squeeze(0).permute(1, 2, 3, 0).cpu().float().numpy()
video_np = (video_np * 255).astype(np.uint8)
height, width = video_np.shape[1:3]
out = cv2.VideoWriter(
output_path, cv2.VideoWriter_fourcc(*"mp4v"), frame_rate, (width, height)
)
for frame in video_np[..., ::-1]:
out.write(frame)
out.release()
return output_path
def create_advanced_options():
with gr.Accordion("Advanced Options", open=False):
seed = gr.Slider(label="Seed", minimum=0, maximum=1000000, step=1, value=171198)
inference_steps = gr.Slider(
label="Inference Steps", minimum=1, maximum=100, step=1, value=40
)
images_per_prompt = gr.Slider(
label="Images per Prompt", minimum=1, maximum=10, step=1, value=1
)
guidance_scale = gr.Slider(
label="Guidance Scale", minimum=1.0, maximum=20.0, step=0.1, value=3.0
)
height_slider = gr.Slider(
label="Height", minimum=256, maximum=1024, step=64, value=704, visible=False
)
width_slider = gr.Slider(
label="Width", minimum=256, maximum=1024, step=64, value=1216, visible=False
)
num_frames_slider = gr.Slider(
label="Number of Frames",
minimum=1,
maximum=200,
step=1,
value=41,
visible=False,
)
frame_rate = gr.Slider(
label="Frame Rate", minimum=1, maximum=60, step=1, value=25, visible=False
)
return [
seed,
inference_steps,
images_per_prompt,
guidance_scale,
height_slider,
width_slider,
num_frames_slider,
frame_rate,
]
# Define the Gradio interface with tabs
with gr.Blocks() as iface:
gr.Markdown("# Video Generation with LTX Video")
with gr.Tabs():
with gr.TabItem("Text to Video"):
with gr.Row():
with gr.Column():
txt2vid_prompt = gr.Textbox(
label="Prompt",
value="A man riding a motorcycle down a winding road, surrounded by lush, green scenery and distant mountains. The sky is clear with a few wispy clouds, and the sunlight glistens on the motorcycle as it speeds along. The rider is dressed in a black leather jacket and helmet, leaning slightly forward as the wind rustles through nearby trees. The wheels kick up dust, creating a slight trail behind the motorcycle, adding a sense of speed and excitement to the scene.",
)
txt2vid_negative_prompt = gr.Textbox(
label="Negative Prompt",
value="worst quality, inconsistent motion...",
)
# Preset dropdown for resolution and frame settings
txt2vid_preset = gr.Dropdown(
choices=[p["label"] for p in preset_options],
value="1216x704, 41 frames",
label="Resolution Preset",
)
txt2vid_advanced = create_advanced_options()
txt2vid_generate = gr.Button("Generate Video")
with gr.Column():
txt2vid_output = gr.Video(label="Generated Video")
with gr.TabItem("Image to Video"):
with gr.Row():
with gr.Column():
img2vid_image = gr.Image(type="filepath", label="Input Image")
img2vid_prompt = gr.Textbox(
label="Prompt",
value="A man riding a motorcycle down a winding road, surrounded by lush, green scenery and distant mountains...",
)
img2vid_negative_prompt = gr.Textbox(
label="Negative Prompt",
value="worst quality, inconsistent motion...",
)
img2vid_preset = gr.Dropdown(
choices=[p["label"] for p in preset_options],
value="1216x704, 41 frames",
label="Resolution Preset",
)
img2vid_advanced = create_advanced_options()
img2vid_generate = gr.Button("Generate Video")
with gr.Column():
img2vid_output = gr.Video(label="Generated Video")
# Event handlers for text-to-video tab
txt2vid_preset.change(
fn=preset_changed,
inputs=[txt2vid_preset],
outputs=txt2vid_advanced[4:], # height, width, num_frames, and their visibility
)
txt2vid_generate.click(
fn=generate_video_from_text,
inputs=[txt2vid_prompt, txt2vid_negative_prompt, *txt2vid_advanced],
outputs=txt2vid_output,
)
# Event handlers for image-to-video tab
img2vid_preset.change(
fn=preset_changed,
inputs=[img2vid_preset],
outputs=img2vid_advanced[4:], # height, width, num_frames, and their visibility
)
img2vid_generate.click(
fn=generate_video_from_image,
inputs=[
img2vid_image,
img2vid_prompt,
img2vid_negative_prompt,
*img2vid_advanced,
],
outputs=img2vid_output,
)
iface.launch(share=True)