File size: 9,478 Bytes
b3f324b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
import json
import os
import torch
import random
import torch.utils.data as data

import numpy as np
from glob import glob
from PIL import Image
from torch.utils.data import Dataset
from tqdm import tqdm

from opensora.dataset.transform import center_crop, RandomCropVideo
from opensora.utils.dataset_utils import DecordInit


class T2V_Feature_dataset(Dataset):
    def __init__(self, args, temporal_sample):

        self.video_folder = args.video_folder
        self.num_frames = args.video_length
        self.temporal_sample = temporal_sample

        print('Building dataset...')
        if os.path.exists('samples_430k.json'):
            with open('samples_430k.json', 'r') as f:
                self.samples = json.load(f)
        else:
            self.samples = self._make_dataset()
            with open('samples_430k.json', 'w') as f:
                json.dump(self.samples, f, indent=2)

        self.use_image_num = args.use_image_num
        self.use_img_from_vid = args.use_img_from_vid
        if self.use_image_num != 0 and not self.use_img_from_vid:
            self.img_cap_list = self.get_img_cap_list()

    def _make_dataset(self):
        all_mp4 = list(glob(os.path.join(self.video_folder, '**', '*.mp4'), recursive=True))
        # all_mp4 = all_mp4[:1000]
        samples = []
        for i in tqdm(all_mp4):
            video_id = os.path.basename(i).split('.')[0]
            ae = os.path.split(i)[0].replace('data_split_tt', 'lb_causalvideovae444_feature')
            ae = os.path.join(ae, f'{video_id}_causalvideovae444.npy')
            if not os.path.exists(ae):
                continue

            t5 = os.path.split(i)[0].replace('data_split_tt', 'lb_t5_feature')
            cond_list = []
            cond_llava = os.path.join(t5, f'{video_id}_t5_llava_fea.npy')
            mask_llava = os.path.join(t5, f'{video_id}_t5_llava_mask.npy')
            if os.path.exists(cond_llava) and os.path.exists(mask_llava):
                llava = dict(cond=cond_llava, mask=mask_llava)
                cond_list.append(llava)
            cond_sharegpt4v = os.path.join(t5, f'{video_id}_t5_sharegpt4v_fea.npy')
            mask_sharegpt4v = os.path.join(t5, f'{video_id}_t5_sharegpt4v_mask.npy')
            if os.path.exists(cond_sharegpt4v) and os.path.exists(mask_sharegpt4v):
                sharegpt4v = dict(cond=cond_sharegpt4v, mask=mask_sharegpt4v)
                cond_list.append(sharegpt4v)
            if len(cond_list) > 0:
                sample = dict(ae=ae, t5=cond_list)
                samples.append(sample)
        return samples

    def __len__(self):
        return len(self.samples)

    def __getitem__(self, idx):
        # try:
        sample = self.samples[idx]
        ae, t5 = sample['ae'], sample['t5']
        t5 = random.choice(t5)
        video_origin = np.load(ae)[0]  # C T H W
        _, total_frames, _, _ = video_origin.shape
        # Sampling video frames
        start_frame_ind, end_frame_ind = self.temporal_sample(total_frames)
        assert end_frame_ind - start_frame_ind >= self.num_frames
        select_video_idx = np.linspace(start_frame_ind, end_frame_ind - 1, num=self.num_frames, dtype=int)  # start, stop, num=50
        # print('select_video_idx', total_frames, select_video_idx)
        video = video_origin[:, select_video_idx]  # C num_frames H W
        video = torch.from_numpy(video)

        cond = torch.from_numpy(np.load(t5['cond']))[0]  # L
        cond_mask = torch.from_numpy(np.load(t5['mask']))[0]  # L D

        if self.use_image_num != 0 and self.use_img_from_vid:
            select_image_idx = np.random.randint(0, total_frames, self.use_image_num)
            # print('select_image_idx', total_frames, self.use_image_num, select_image_idx)
            images = video_origin[:, select_image_idx]  # c, num_img, h, w
            images = torch.from_numpy(images)
            video = torch.cat([video, images], dim=1)  # c, num_frame+num_img, h, w
            cond = torch.stack([cond] * (1+self.use_image_num))  # 1+self.use_image_num, l
            cond_mask = torch.stack([cond_mask] * (1+self.use_image_num))  # 1+self.use_image_num, l
        elif self.use_image_num != 0 and not self.use_img_from_vid:
            images, captions = self.img_cap_list[idx]
            raise NotImplementedError
        else:
            pass

        return video, cond, cond_mask
        # except Exception as e:
        #     print(f'Error with {e}, {sample}')
        #     return self.__getitem__(random.randint(0, self.__len__() - 1))

    def get_img_cap_list(self):
        raise NotImplementedError




class T2V_T5_Feature_dataset(Dataset):
    def __init__(self, args, transform, temporal_sample):

        self.video_folder = args.video_folder
        self.num_frames = args.num_frames
        self.transform = transform
        self.temporal_sample = temporal_sample
        self.v_decoder = DecordInit()

        print('Building dataset...')
        if os.path.exists('samples_430k.json'):
            with open('samples_430k.json', 'r') as f:
                self.samples = json.load(f)
                self.samples = [dict(ae=i['ae'].replace('lb_causalvideovae444_feature', 'data_split_1024').replace('_causalvideovae444.npy', '.mp4'), t5=i['t5']) for i in self.samples]
        else:
            self.samples = self._make_dataset()
            with open('samples_430k.json', 'w') as f:
                json.dump(self.samples, f, indent=2)

        self.use_image_num = args.use_image_num
        self.use_img_from_vid = args.use_img_from_vid
        if self.use_image_num != 0 and not self.use_img_from_vid:
            self.img_cap_list = self.get_img_cap_list()

    def _make_dataset(self):
        all_mp4 = list(glob(os.path.join(self.video_folder, '**', '*.mp4'), recursive=True))
        # all_mp4 = all_mp4[:1000]
        samples = []
        for i in tqdm(all_mp4):
            video_id = os.path.basename(i).split('.')[0]
            # ae = os.path.split(i)[0].replace('data_split', 'lb_causalvideovae444_feature')
            # ae = os.path.join(ae, f'{video_id}_causalvideovae444.npy')
            ae = i
            if not os.path.exists(ae):
                continue

            t5 = os.path.split(i)[0].replace('data_split_1024', 'lb_t5_feature')
            cond_list = []
            cond_llava = os.path.join(t5, f'{video_id}_t5_llava_fea.npy')
            mask_llava = os.path.join(t5, f'{video_id}_t5_llava_mask.npy')
            if os.path.exists(cond_llava) and os.path.exists(mask_llava):
                llava = dict(cond=cond_llava, mask=mask_llava)
                cond_list.append(llava)
            cond_sharegpt4v = os.path.join(t5, f'{video_id}_t5_sharegpt4v_fea.npy')
            mask_sharegpt4v = os.path.join(t5, f'{video_id}_t5_sharegpt4v_mask.npy')
            if os.path.exists(cond_sharegpt4v) and os.path.exists(mask_sharegpt4v):
                sharegpt4v = dict(cond=cond_sharegpt4v, mask=mask_sharegpt4v)
                cond_list.append(sharegpt4v)
            if len(cond_list) > 0:
                sample = dict(ae=ae, t5=cond_list)
                samples.append(sample)
        return samples

    def __len__(self):
        return len(self.samples)

    def __getitem__(self, idx):
        try:
            sample = self.samples[idx]
            ae, t5 = sample['ae'], sample['t5']
            t5 = random.choice(t5)

            video = self.decord_read(ae)
            video = self.transform(video)  # T C H W -> T C H W
            video = video.transpose(0, 1)  # T C H W -> C T H W
            total_frames = video.shape[1]
            cond = torch.from_numpy(np.load(t5['cond']))[0]  # L
            cond_mask = torch.from_numpy(np.load(t5['mask']))[0]  # L D

            if self.use_image_num != 0 and self.use_img_from_vid:
                select_image_idx = np.random.randint(0, total_frames, self.use_image_num)
                # print('select_image_idx', total_frames, self.use_image_num, select_image_idx)
                images = video.numpy()[:, select_image_idx]  # c, num_img, h, w
                images = torch.from_numpy(images)
                video = torch.cat([video, images], dim=1)  # c, num_frame+num_img, h, w
                cond = torch.stack([cond] * (1+self.use_image_num))  # 1+self.use_image_num, l
                cond_mask = torch.stack([cond_mask] * (1+self.use_image_num))  # 1+self.use_image_num, l
            elif self.use_image_num != 0 and not self.use_img_from_vid:
                images, captions = self.img_cap_list[idx]
                raise NotImplementedError
            else:
                pass

            return video, cond, cond_mask
        except Exception as e:
            print(f'Error with {e}, {sample}')
            return self.__getitem__(random.randint(0, self.__len__() - 1))

    def decord_read(self, path):
        decord_vr = self.v_decoder(path)
        total_frames = len(decord_vr)
        # Sampling video frames
        start_frame_ind, end_frame_ind = self.temporal_sample(total_frames)
        # assert end_frame_ind - start_frame_ind >= self.num_frames
        frame_indice = np.linspace(start_frame_ind, end_frame_ind - 1, self.num_frames, dtype=int)
        video_data = decord_vr.get_batch(frame_indice).asnumpy()
        video_data = torch.from_numpy(video_data)
        video_data = video_data.permute(0, 3, 1, 2)  # (T, H, W, C) -> (T C H W)
        return video_data

    def get_img_cap_list(self):
        raise NotImplementedError