File size: 9,478 Bytes
b3f324b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 |
import json
import os
import torch
import random
import torch.utils.data as data
import numpy as np
from glob import glob
from PIL import Image
from torch.utils.data import Dataset
from tqdm import tqdm
from opensora.dataset.transform import center_crop, RandomCropVideo
from opensora.utils.dataset_utils import DecordInit
class T2V_Feature_dataset(Dataset):
def __init__(self, args, temporal_sample):
self.video_folder = args.video_folder
self.num_frames = args.video_length
self.temporal_sample = temporal_sample
print('Building dataset...')
if os.path.exists('samples_430k.json'):
with open('samples_430k.json', 'r') as f:
self.samples = json.load(f)
else:
self.samples = self._make_dataset()
with open('samples_430k.json', 'w') as f:
json.dump(self.samples, f, indent=2)
self.use_image_num = args.use_image_num
self.use_img_from_vid = args.use_img_from_vid
if self.use_image_num != 0 and not self.use_img_from_vid:
self.img_cap_list = self.get_img_cap_list()
def _make_dataset(self):
all_mp4 = list(glob(os.path.join(self.video_folder, '**', '*.mp4'), recursive=True))
# all_mp4 = all_mp4[:1000]
samples = []
for i in tqdm(all_mp4):
video_id = os.path.basename(i).split('.')[0]
ae = os.path.split(i)[0].replace('data_split_tt', 'lb_causalvideovae444_feature')
ae = os.path.join(ae, f'{video_id}_causalvideovae444.npy')
if not os.path.exists(ae):
continue
t5 = os.path.split(i)[0].replace('data_split_tt', 'lb_t5_feature')
cond_list = []
cond_llava = os.path.join(t5, f'{video_id}_t5_llava_fea.npy')
mask_llava = os.path.join(t5, f'{video_id}_t5_llava_mask.npy')
if os.path.exists(cond_llava) and os.path.exists(mask_llava):
llava = dict(cond=cond_llava, mask=mask_llava)
cond_list.append(llava)
cond_sharegpt4v = os.path.join(t5, f'{video_id}_t5_sharegpt4v_fea.npy')
mask_sharegpt4v = os.path.join(t5, f'{video_id}_t5_sharegpt4v_mask.npy')
if os.path.exists(cond_sharegpt4v) and os.path.exists(mask_sharegpt4v):
sharegpt4v = dict(cond=cond_sharegpt4v, mask=mask_sharegpt4v)
cond_list.append(sharegpt4v)
if len(cond_list) > 0:
sample = dict(ae=ae, t5=cond_list)
samples.append(sample)
return samples
def __len__(self):
return len(self.samples)
def __getitem__(self, idx):
# try:
sample = self.samples[idx]
ae, t5 = sample['ae'], sample['t5']
t5 = random.choice(t5)
video_origin = np.load(ae)[0] # C T H W
_, total_frames, _, _ = video_origin.shape
# Sampling video frames
start_frame_ind, end_frame_ind = self.temporal_sample(total_frames)
assert end_frame_ind - start_frame_ind >= self.num_frames
select_video_idx = np.linspace(start_frame_ind, end_frame_ind - 1, num=self.num_frames, dtype=int) # start, stop, num=50
# print('select_video_idx', total_frames, select_video_idx)
video = video_origin[:, select_video_idx] # C num_frames H W
video = torch.from_numpy(video)
cond = torch.from_numpy(np.load(t5['cond']))[0] # L
cond_mask = torch.from_numpy(np.load(t5['mask']))[0] # L D
if self.use_image_num != 0 and self.use_img_from_vid:
select_image_idx = np.random.randint(0, total_frames, self.use_image_num)
# print('select_image_idx', total_frames, self.use_image_num, select_image_idx)
images = video_origin[:, select_image_idx] # c, num_img, h, w
images = torch.from_numpy(images)
video = torch.cat([video, images], dim=1) # c, num_frame+num_img, h, w
cond = torch.stack([cond] * (1+self.use_image_num)) # 1+self.use_image_num, l
cond_mask = torch.stack([cond_mask] * (1+self.use_image_num)) # 1+self.use_image_num, l
elif self.use_image_num != 0 and not self.use_img_from_vid:
images, captions = self.img_cap_list[idx]
raise NotImplementedError
else:
pass
return video, cond, cond_mask
# except Exception as e:
# print(f'Error with {e}, {sample}')
# return self.__getitem__(random.randint(0, self.__len__() - 1))
def get_img_cap_list(self):
raise NotImplementedError
class T2V_T5_Feature_dataset(Dataset):
def __init__(self, args, transform, temporal_sample):
self.video_folder = args.video_folder
self.num_frames = args.num_frames
self.transform = transform
self.temporal_sample = temporal_sample
self.v_decoder = DecordInit()
print('Building dataset...')
if os.path.exists('samples_430k.json'):
with open('samples_430k.json', 'r') as f:
self.samples = json.load(f)
self.samples = [dict(ae=i['ae'].replace('lb_causalvideovae444_feature', 'data_split_1024').replace('_causalvideovae444.npy', '.mp4'), t5=i['t5']) for i in self.samples]
else:
self.samples = self._make_dataset()
with open('samples_430k.json', 'w') as f:
json.dump(self.samples, f, indent=2)
self.use_image_num = args.use_image_num
self.use_img_from_vid = args.use_img_from_vid
if self.use_image_num != 0 and not self.use_img_from_vid:
self.img_cap_list = self.get_img_cap_list()
def _make_dataset(self):
all_mp4 = list(glob(os.path.join(self.video_folder, '**', '*.mp4'), recursive=True))
# all_mp4 = all_mp4[:1000]
samples = []
for i in tqdm(all_mp4):
video_id = os.path.basename(i).split('.')[0]
# ae = os.path.split(i)[0].replace('data_split', 'lb_causalvideovae444_feature')
# ae = os.path.join(ae, f'{video_id}_causalvideovae444.npy')
ae = i
if not os.path.exists(ae):
continue
t5 = os.path.split(i)[0].replace('data_split_1024', 'lb_t5_feature')
cond_list = []
cond_llava = os.path.join(t5, f'{video_id}_t5_llava_fea.npy')
mask_llava = os.path.join(t5, f'{video_id}_t5_llava_mask.npy')
if os.path.exists(cond_llava) and os.path.exists(mask_llava):
llava = dict(cond=cond_llava, mask=mask_llava)
cond_list.append(llava)
cond_sharegpt4v = os.path.join(t5, f'{video_id}_t5_sharegpt4v_fea.npy')
mask_sharegpt4v = os.path.join(t5, f'{video_id}_t5_sharegpt4v_mask.npy')
if os.path.exists(cond_sharegpt4v) and os.path.exists(mask_sharegpt4v):
sharegpt4v = dict(cond=cond_sharegpt4v, mask=mask_sharegpt4v)
cond_list.append(sharegpt4v)
if len(cond_list) > 0:
sample = dict(ae=ae, t5=cond_list)
samples.append(sample)
return samples
def __len__(self):
return len(self.samples)
def __getitem__(self, idx):
try:
sample = self.samples[idx]
ae, t5 = sample['ae'], sample['t5']
t5 = random.choice(t5)
video = self.decord_read(ae)
video = self.transform(video) # T C H W -> T C H W
video = video.transpose(0, 1) # T C H W -> C T H W
total_frames = video.shape[1]
cond = torch.from_numpy(np.load(t5['cond']))[0] # L
cond_mask = torch.from_numpy(np.load(t5['mask']))[0] # L D
if self.use_image_num != 0 and self.use_img_from_vid:
select_image_idx = np.random.randint(0, total_frames, self.use_image_num)
# print('select_image_idx', total_frames, self.use_image_num, select_image_idx)
images = video.numpy()[:, select_image_idx] # c, num_img, h, w
images = torch.from_numpy(images)
video = torch.cat([video, images], dim=1) # c, num_frame+num_img, h, w
cond = torch.stack([cond] * (1+self.use_image_num)) # 1+self.use_image_num, l
cond_mask = torch.stack([cond_mask] * (1+self.use_image_num)) # 1+self.use_image_num, l
elif self.use_image_num != 0 and not self.use_img_from_vid:
images, captions = self.img_cap_list[idx]
raise NotImplementedError
else:
pass
return video, cond, cond_mask
except Exception as e:
print(f'Error with {e}, {sample}')
return self.__getitem__(random.randint(0, self.__len__() - 1))
def decord_read(self, path):
decord_vr = self.v_decoder(path)
total_frames = len(decord_vr)
# Sampling video frames
start_frame_ind, end_frame_ind = self.temporal_sample(total_frames)
# assert end_frame_ind - start_frame_ind >= self.num_frames
frame_indice = np.linspace(start_frame_ind, end_frame_ind - 1, self.num_frames, dtype=int)
video_data = decord_vr.get_batch(frame_indice).asnumpy()
video_data = torch.from_numpy(video_data)
video_data = video_data.permute(0, 3, 1, 2) # (T, H, W, C) -> (T C H W)
return video_data
def get_img_cap_list(self):
raise NotImplementedError |