File size: 7,871 Bytes
b3f324b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 |
import math
import os
import torch
import argparse
import torchvision
from diffusers.schedulers import (DDIMScheduler, DDPMScheduler, PNDMScheduler,
EulerDiscreteScheduler, DPMSolverMultistepScheduler,
HeunDiscreteScheduler, EulerAncestralDiscreteScheduler,
DEISMultistepScheduler, KDPM2AncestralDiscreteScheduler)
from diffusers.schedulers.scheduling_dpmsolver_singlestep import DPMSolverSinglestepScheduler
from diffusers.models import AutoencoderKL, AutoencoderKLTemporalDecoder
from omegaconf import OmegaConf
from torchvision.utils import save_image
from transformers import T5EncoderModel, T5Tokenizer, AutoTokenizer
import os, sys
from opensora.models.ae import ae_stride_config, getae, getae_wrapper
from opensora.models.ae.videobase import CausalVQVAEModelWrapper, CausalVAEModelWrapper
from opensora.models.diffusion.latte.modeling_latte import LatteT2V
from opensora.models.text_encoder import get_text_enc
from opensora.utils.utils import save_video_grid
sys.path.append(os.path.split(sys.path[0])[0])
from pipeline_videogen import VideoGenPipeline
import imageio
def main(args):
# torch.manual_seed(args.seed)
torch.set_grad_enabled(False)
device = "cuda" if torch.cuda.is_available() else "cpu"
vae = getae_wrapper(args.ae)(args.model_path, subfolder="vae", cache_dir='cache_dir').to(device, dtype=torch.float16)
if args.enable_tiling:
vae.vae.enable_tiling()
vae.vae.tile_overlap_factor = args.tile_overlap_factor
# Load model:
transformer_model = LatteT2V.from_pretrained(args.model_path, subfolder=args.version, cache_dir="cache_dir", torch_dtype=torch.float16).to(device)
transformer_model.force_images = args.force_images
tokenizer = T5Tokenizer.from_pretrained(args.text_encoder_name, cache_dir="cache_dir")
text_encoder = T5EncoderModel.from_pretrained(args.text_encoder_name, cache_dir="cache_dir", torch_dtype=torch.float16).to(device)
video_length, image_size = transformer_model.config.video_length, int(args.version.split('x')[1])
latent_size = (image_size // ae_stride_config[args.ae][1], image_size // ae_stride_config[args.ae][2])
vae.latent_size = latent_size
if args.force_images:
video_length = 1
ext = 'jpg'
else:
ext = 'mp4'
# set eval mode
transformer_model.eval()
vae.eval()
text_encoder.eval()
if args.sample_method == 'DDIM': #########
scheduler = DDIMScheduler()
elif args.sample_method == 'EulerDiscrete':
scheduler = EulerDiscreteScheduler()
elif args.sample_method == 'DDPM': #############
scheduler = DDPMScheduler()
elif args.sample_method == 'DPMSolverMultistep':
scheduler = DPMSolverMultistepScheduler()
elif args.sample_method == 'DPMSolverSinglestep':
scheduler = DPMSolverSinglestepScheduler()
elif args.sample_method == 'PNDM':
scheduler = PNDMScheduler()
elif args.sample_method == 'HeunDiscrete': ########
scheduler = HeunDiscreteScheduler()
elif args.sample_method == 'EulerAncestralDiscrete':
scheduler = EulerAncestralDiscreteScheduler()
elif args.sample_method == 'DEISMultistep':
scheduler = DEISMultistepScheduler()
elif args.sample_method == 'KDPM2AncestralDiscrete': #########
scheduler = KDPM2AncestralDiscreteScheduler()
print('videogen_pipeline', device)
videogen_pipeline = VideoGenPipeline(vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
scheduler=scheduler,
transformer=transformer_model).to(device=device)
# videogen_pipeline.enable_xformers_memory_efficient_attention()
if not os.path.exists(args.save_img_path):
os.makedirs(args.save_img_path)
video_grids = []
if not isinstance(args.text_prompt, list):
args.text_prompt = [args.text_prompt]
if len(args.text_prompt) == 1 and args.text_prompt[0].endswith('txt'):
text_prompt = open(args.text_prompt[0], 'r').readlines()
args.text_prompt = [i.strip() for i in text_prompt]
for prompt in args.text_prompt:
print('Processing the ({}) prompt'.format(prompt))
videos = videogen_pipeline(prompt,
video_length=video_length,
height=image_size,
width=image_size,
num_inference_steps=args.num_sampling_steps,
guidance_scale=args.guidance_scale,
enable_temporal_attentions=not args.force_images,
num_images_per_prompt=1,
mask_feature=True,
).video
try:
if args.force_images:
videos = videos[:, 0].permute(0, 3, 1, 2) # b t h w c -> b c h w
save_image(videos / 255.0, os.path.join(args.save_img_path,
prompt.replace(' ', '_')[:100] + f'{args.sample_method}_gs{args.guidance_scale}_s{args.num_sampling_steps}.{ext}'),
nrow=1, normalize=True, value_range=(0, 1)) # t c h w
else:
imageio.mimwrite(
os.path.join(
args.save_img_path,
prompt.replace(' ', '_')[:100] + f'{args.sample_method}_gs{args.guidance_scale}_s{args.num_sampling_steps}.{ext}'
), videos[0],
fps=args.fps, quality=9) # highest quality is 10, lowest is 0
except:
print('Error when saving {}'.format(prompt))
video_grids.append(videos)
video_grids = torch.cat(video_grids, dim=0)
# torchvision.io.write_video(args.save_img_path + '_%04d' % args.run_time + '-.mp4', video_grids, fps=6)
if args.force_images:
save_image(video_grids / 255.0, os.path.join(args.save_img_path, f'{args.sample_method}_gs{args.guidance_scale}_s{args.num_sampling_steps}.{ext}'),
nrow=math.ceil(math.sqrt(len(video_grids))), normalize=True, value_range=(0, 1))
else:
video_grids = save_video_grid(video_grids)
imageio.mimwrite(os.path.join(args.save_img_path, f'{args.sample_method}_gs{args.guidance_scale}_s{args.num_sampling_steps}.{ext}'), video_grids, fps=args.fps, quality=9)
print('save path {}'.format(args.save_img_path))
# save_videos_grid(video, f"./{prompt}.gif")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--model_path", type=str, default='LanguageBind/Open-Sora-Plan-v1.0.0')
parser.add_argument("--version", type=str, default='65x512x512', choices=['65x512x512', '65x256x256', '17x256x256'])
parser.add_argument("--ae", type=str, default='CausalVAEModel_4x8x8')
parser.add_argument("--text_encoder_name", type=str, default='DeepFloyd/t5-v1_1-xxl')
parser.add_argument("--save_img_path", type=str, default="./sample_videos/t2v")
parser.add_argument("--guidance_scale", type=float, default=7.5)
parser.add_argument("--sample_method", type=str, default="PNDM")
parser.add_argument("--num_sampling_steps", type=int, default=50)
parser.add_argument("--fps", type=int, default=24)
parser.add_argument("--run_time", type=int, default=0)
parser.add_argument("--text_prompt", nargs='+')
parser.add_argument('--force_images', action='store_true')
parser.add_argument('--tile_overlap_factor', type=float, default=0.25)
parser.add_argument('--enable_tiling', action='store_true')
args = parser.parse_args()
main(args) |