import numpy as np import cv2 import torch def normalize_tensor(in_feat,eps=1e-10): norm_factor = torch.sqrt(torch.sum(in_feat**2,dim=1,keepdim=True)) return in_feat/(norm_factor+eps) def l2(p0, p1, range=255.): return .5*np.mean((p0 / range - p1 / range)**2) def dssim(p0, p1, range=255.): from skimage.measure import compare_ssim return (1 - compare_ssim(p0, p1, data_range=range, multichannel=True)) / 2. def tensor2im(image_tensor, imtype=np.uint8, cent=1., factor=255./2.): image_numpy = image_tensor[0].cpu().float().numpy() image_numpy = (np.transpose(image_numpy, (1, 2, 0)) + cent) * factor return image_numpy.astype(imtype) def tensor2np(tensor_obj): # change dimension of a tensor object into a numpy array return tensor_obj[0].cpu().float().numpy().transpose((1,2,0)) def np2tensor(np_obj): # change dimenion of np array into tensor array return torch.Tensor(np_obj[:, :, :, np.newaxis].transpose((3, 2, 0, 1))) def tensor2tensorlab(image_tensor,to_norm=True,mc_only=False): # image tensor to lab tensor from skimage import color img = tensor2im(image_tensor) img_lab = color.rgb2lab(img) if(mc_only): img_lab[:,:,0] = img_lab[:,:,0]-50 if(to_norm and not mc_only): img_lab[:,:,0] = img_lab[:,:,0]-50 img_lab = img_lab/100. return np2tensor(img_lab) def read_frame_yuv2rgb(stream, width, height, iFrame, bit_depth, pix_fmt='420'): if pix_fmt == '420': multiplier = 1 uv_factor = 2 elif pix_fmt == '444': multiplier = 2 uv_factor = 1 else: print('Pixel format {} is not supported'.format(pix_fmt)) return if bit_depth == 8: datatype = np.uint8 stream.seek(iFrame*1.5*width*height*multiplier) Y = np.fromfile(stream, dtype=datatype, count=width*height).reshape((height, width)) # read chroma samples and upsample since original is 4:2:0 sampling U = np.fromfile(stream, dtype=datatype, count=(width//uv_factor)*(height//uv_factor)).\ reshape((height//uv_factor, width//uv_factor)) V = np.fromfile(stream, dtype=datatype, count=(width//uv_factor)*(height//uv_factor)).\ reshape((height//uv_factor, width//uv_factor)) else: datatype = np.uint16 stream.seek(iFrame*3*width*height*multiplier) Y = np.fromfile(stream, dtype=datatype, count=width*height).reshape((height, width)) U = np.fromfile(stream, dtype=datatype, count=(width//uv_factor)*(height//uv_factor)).\ reshape((height//uv_factor, width//uv_factor)) V = np.fromfile(stream, dtype=datatype, count=(width//uv_factor)*(height//uv_factor)).\ reshape((height//uv_factor, width//uv_factor)) if pix_fmt == '420': yuv = np.empty((height*3//2, width), dtype=datatype) yuv[0:height,:] = Y yuv[height:height+height//4,:] = U.reshape(-1, width) yuv[height+height//4:,:] = V.reshape(-1, width) if bit_depth != 8: yuv = (yuv/(2**bit_depth-1)*255).astype(np.uint8) #convert to rgb rgb = cv2.cvtColor(yuv, cv2.COLOR_YUV2RGB_I420) else: yvu = np.stack([Y,V,U],axis=2) if bit_depth != 8: yvu = (yvu/(2**bit_depth-1)*255).astype(np.uint8) rgb = cv2.cvtColor(yvu, cv2.COLOR_YCrCb2RGB) return rgb