Spaces:
Runtime error
Runtime error
UI improvement
Browse files- Fixed height
- Increase width
- Download button
- Clear cache
- Code fix for follow up generations
app.py
CHANGED
@@ -1,6 +1,8 @@
|
|
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
import devicetorch
|
|
|
4 |
from diffusers import StableDiffusionXLPipeline, StableDiffusionPipeline, LCMScheduler
|
5 |
from diffusers.schedulers import TCDScheduler
|
6 |
|
@@ -60,35 +62,41 @@ def generate_image(
|
|
60 |
|
61 |
pipe = pipe_sdxl if mode == "sdxl" else pipe_sd15
|
62 |
|
63 |
-
|
64 |
-
pipe.load_lora_weights(
|
65 |
"wangfuyun/PCM_Weights", weight_name=checkpoint, subfolder=mode
|
66 |
)
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
|
80 |
results = pipe(
|
81 |
prompt, num_inference_steps=num_inference_steps, guidance_scale=guidance_scale
|
82 |
)
|
83 |
|
|
|
|
|
|
|
|
|
|
|
84 |
# if SAFETY_CHECKER:
|
85 |
# images, has_nsfw_concepts = check_nsfw_images(results.images)
|
86 |
# if any(has_nsfw_concepts):
|
87 |
# gr.Warning("NSFW content detected.")
|
88 |
# return Image.new("RGB", (512, 512))
|
89 |
# return images[0]
|
90 |
-
return results.images[0]
|
91 |
|
|
|
|
|
92 |
|
93 |
def update_steps(ckpt):
|
94 |
num_inference_steps = checkpoints[ckpt][1]
|
@@ -99,7 +107,14 @@ def update_steps(ckpt):
|
|
99 |
|
100 |
css = """
|
101 |
.gradio-container {
|
102 |
-
max-width:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
103 |
}
|
104 |
"""
|
105 |
with gr.Blocks(css=css) as demo:
|
@@ -108,14 +123,12 @@ with gr.Blocks(css=css) as demo:
|
|
108 |
# Phased Consistency Model
|
109 |
|
110 |
Phased Consistency Model (PCM) is an image generation technique that addresses the limitations of the Latent Consistency Model (LCM) in high-resolution and text-conditioned image generation.
|
111 |
-
PCM outperforms LCM across various generation settings and achieves state-of-the-art results in both image and video generation.
|
112 |
-
|
113 |
-
[[paper](https://huggingface.co/papers/2405.18407)] [[arXiv](https://arxiv.org/abs/2405.18407)] [[code](https://github.com/G-U-N/Phased-Consistency-Model)] [[project page](https://g-u-n.github.io/projects/pcm)]
|
114 |
"""
|
115 |
)
|
116 |
with gr.Group():
|
117 |
with gr.Row():
|
118 |
-
prompt = gr.Textbox(label="Prompt", scale=
|
119 |
ckpt = gr.Dropdown(
|
120 |
label="Select inference steps",
|
121 |
choices=list(checkpoints.keys()),
|
@@ -137,10 +150,12 @@ PCM outperforms LCM across various generation settings and achieves state-of-the
|
|
137 |
show_progress=False,
|
138 |
)
|
139 |
|
|
|
140 |
submit_sdxl = gr.Button("Run on SDXL", scale=1)
|
141 |
submit_sd15 = gr.Button("Run on SD15", scale=1)
|
142 |
|
143 |
-
img = gr.Image(label="PCM Image")
|
|
|
144 |
gr.Examples(
|
145 |
examples=[
|
146 |
[" astronaut walking on the moon", "4-Step", 4],
|
@@ -171,7 +186,7 @@ PCM outperforms LCM across various generation settings and achieves state-of-the
|
|
171 |
],
|
172 |
],
|
173 |
inputs=[prompt, ckpt, steps],
|
174 |
-
outputs=[img],
|
175 |
fn=generate_image,
|
176 |
#cache_examples="lazy",
|
177 |
)
|
@@ -180,14 +195,22 @@ PCM outperforms LCM across various generation settings and achieves state-of-the
|
|
180 |
fn=generate_image,
|
181 |
triggers=[ckpt.change, prompt.submit, submit_sdxl.click],
|
182 |
inputs=[prompt, ckpt, steps],
|
183 |
-
outputs=[img],
|
184 |
-
)
|
|
|
|
|
|
|
|
|
185 |
gr.on(
|
186 |
fn=lambda *args: generate_image(*args, mode="sd15"),
|
187 |
triggers=[submit_sd15.click],
|
188 |
inputs=[prompt, ckpt, steps],
|
189 |
-
outputs=[img],
|
190 |
-
)
|
|
|
|
|
|
|
|
|
191 |
|
192 |
|
193 |
demo.queue(api_open=False).launch(show_api=False)
|
|
|
1 |
+
import os
|
2 |
import gradio as gr
|
3 |
import torch
|
4 |
import devicetorch
|
5 |
+
import tempfile
|
6 |
from diffusers import StableDiffusionXLPipeline, StableDiffusionPipeline, LCMScheduler
|
7 |
from diffusers.schedulers import TCDScheduler
|
8 |
|
|
|
62 |
|
63 |
pipe = pipe_sdxl if mode == "sdxl" else pipe_sd15
|
64 |
|
65 |
+
pipe.load_lora_weights(
|
|
|
66 |
"wangfuyun/PCM_Weights", weight_name=checkpoint, subfolder=mode
|
67 |
)
|
68 |
+
|
69 |
+
|
70 |
+
if ckpt == "LCM-Like LoRA":
|
71 |
+
pipe.scheduler = LCMScheduler()
|
72 |
+
else:
|
73 |
+
pipe.scheduler = TCDScheduler(
|
74 |
+
num_train_timesteps=1000,
|
75 |
+
beta_start=0.00085,
|
76 |
+
beta_end=0.012,
|
77 |
+
beta_schedule="scaled_linear",
|
78 |
+
timestep_spacing="trailing",
|
79 |
+
)
|
80 |
|
81 |
results = pipe(
|
82 |
prompt, num_inference_steps=num_inference_steps, guidance_scale=guidance_scale
|
83 |
)
|
84 |
|
85 |
+
|
86 |
+
gradio_temp_dir = os.environ.get('GRADIO_TEMP_DIR', tempfile.gettempdir())
|
87 |
+
temp_file_path = os.path.join(gradio_temp_dir, "image.png")
|
88 |
+
results.images[0].save(temp_file_path, format="PNG")
|
89 |
+
|
90 |
# if SAFETY_CHECKER:
|
91 |
# images, has_nsfw_concepts = check_nsfw_images(results.images)
|
92 |
# if any(has_nsfw_concepts):
|
93 |
# gr.Warning("NSFW content detected.")
|
94 |
# return Image.new("RGB", (512, 512))
|
95 |
# return images[0]
|
96 |
+
return results.images[0], temp_file_path
|
97 |
|
98 |
+
def clear_cache():
|
99 |
+
devicetorch.empty_cache(torch)
|
100 |
|
101 |
def update_steps(ckpt):
|
102 |
num_inference_steps = checkpoints[ckpt][1]
|
|
|
107 |
|
108 |
css = """
|
109 |
.gradio-container {
|
110 |
+
max-width: 95vw !important;
|
111 |
+
margin: auto !important
|
112 |
+
}
|
113 |
+
.img img {
|
114 |
+
height: 70vh !important
|
115 |
+
}
|
116 |
+
#row-height {
|
117 |
+
height: 65px !important
|
118 |
}
|
119 |
"""
|
120 |
with gr.Blocks(css=css) as demo:
|
|
|
123 |
# Phased Consistency Model
|
124 |
|
125 |
Phased Consistency Model (PCM) is an image generation technique that addresses the limitations of the Latent Consistency Model (LCM) in high-resolution and text-conditioned image generation.
|
126 |
+
PCM outperforms LCM across various generation settings and achieves state-of-the-art results in both image and video generation. [[paper](https://huggingface.co/papers/2405.18407)] [[arXiv](https://arxiv.org/abs/2405.18407)] [[code](https://github.com/G-U-N/Phased-Consistency-Model)] [[project page](https://g-u-n.github.io/projects/pcm)]
|
|
|
|
|
127 |
"""
|
128 |
)
|
129 |
with gr.Group():
|
130 |
with gr.Row():
|
131 |
+
prompt = gr.Textbox(label="Prompt", scale=4)
|
132 |
ckpt = gr.Dropdown(
|
133 |
label="Select inference steps",
|
134 |
choices=list(checkpoints.keys()),
|
|
|
150 |
show_progress=False,
|
151 |
)
|
152 |
|
153 |
+
with gr.Row():
|
154 |
submit_sdxl = gr.Button("Run on SDXL", scale=1)
|
155 |
submit_sd15 = gr.Button("Run on SD15", scale=1)
|
156 |
|
157 |
+
img = gr.Image(label="PCM Image", elem_classes="img")
|
158 |
+
download_image = gr.File(label="Download Image", file_count="single", interactive=False, elem_id="row-height")
|
159 |
gr.Examples(
|
160 |
examples=[
|
161 |
[" astronaut walking on the moon", "4-Step", 4],
|
|
|
186 |
],
|
187 |
],
|
188 |
inputs=[prompt, ckpt, steps],
|
189 |
+
outputs=[img, download_image],
|
190 |
fn=generate_image,
|
191 |
#cache_examples="lazy",
|
192 |
)
|
|
|
195 |
fn=generate_image,
|
196 |
triggers=[ckpt.change, prompt.submit, submit_sdxl.click],
|
197 |
inputs=[prompt, ckpt, steps],
|
198 |
+
outputs=[img, download_image],
|
199 |
+
).then(
|
200 |
+
fn=clear_cache,
|
201 |
+
inputs=[],
|
202 |
+
outputs=None
|
203 |
+
)
|
204 |
gr.on(
|
205 |
fn=lambda *args: generate_image(*args, mode="sd15"),
|
206 |
triggers=[submit_sd15.click],
|
207 |
inputs=[prompt, ckpt, steps],
|
208 |
+
outputs=[img, download_image],
|
209 |
+
).then(
|
210 |
+
fn=clear_cache,
|
211 |
+
inputs=[],
|
212 |
+
outputs=None
|
213 |
+
)
|
214 |
|
215 |
|
216 |
demo.queue(api_open=False).launch(show_api=False)
|