Spaces:
Running
Running
import gradio as gr | |
import torch | |
import random | |
import transformers | |
from transformers import T5Tokenizer, T5ForConditionalGeneration | |
if torch.cuda.is_available(): | |
device = "cuda" | |
print("Using GPU") | |
else: | |
device = "cpu" | |
print("Using CPU") | |
tokenizer = T5Tokenizer.from_pretrained("roborovski/superprompt-v1") | |
model = T5ForConditionalGeneration.from_pretrained("roborovski/superprompt-v1", device_map="auto", torch_dtype="auto") | |
model.to(device) | |
def generate(your_prompt, task_prefix, max_new_tokens, repetition_penalty, temperature, model_precision_type, top_p, top_k, seed): | |
if seed == 0: | |
seed = random.randint(1, 2**32-1) | |
transformers.set_seed(seed) | |
if model_precision_type == "fp16": | |
dtype = torch.float16 | |
elif model_precision_type == "fp32": | |
dtype = torch.float32 | |
model.to(dtype) | |
repetition_penalty = float(repetition_penalty) | |
input_text = f"{task_prefix}: {your_prompt}" | |
input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to(device) | |
outputs = model.generate( | |
input_ids, | |
max_new_tokens=max_new_tokens, | |
repetition_penalty=repetition_penalty, | |
do_sample=True, | |
temperature=temperature, | |
top_p=top_p, | |
top_k=top_k, | |
) | |
better_prompt = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
return better_prompt | |
your_prompt = gr.Textbox(label="Your Prompt", info="Your Prompt that you wanna make better") | |
task_prefix = gr.Textbox(label="Task Prefix", info="The prompt prefix for how the AI should make yours better",value="Expand the following prompt to add more detail") | |
max_new_tokens = gr.Slider(value=512, minimum=25, maximum=512, step=1, label="Max New Tokens", info="The maximum numbers of new tokens, controls how long is the output") | |
repetition_penalty = gr.Slider(value=1.2, minimum=0, maximum=2.0, step=0.05, label="Repetition Penalty", info="Penalize repeated tokens, making the AI repeat less itself") | |
temperature = gr.Slider(value=0.7, minimum=0, maximum=1, step=0.05, label="Temperature", info="Higher values produce more diverse outputs") | |
model_precision_type = gr.Dropdown(["fp16", "fp32"], value="fp16", label="Model Precision Type", info="The precision type to load the model, like fp16 which is faster, or fp32 which is more precise but more resource consuming") | |
top_p = gr.Slider(value=1, minimum=0, maximum=2, step=0.05, label="Top P", info="Higher values sample more low-probability tokens") | |
top_k = gr.Slider(value=50, minimum=1, maximum=100, step=1, label="Top K", info="Higher k means more diverse outputs by considering a range of tokens") | |
seed = gr.Slider(value=42, minimum=0, maximum=2**32-1, step=1, label="Seed", info="A starting point to initiate the generation process, put 0 for a random one") | |
examples = [ | |
["A storefront with 'Text to Image' written on it.", "Expand the following prompt to add more detail", 512, 1.2, 0.5, "fp16", 1, 50, 42] | |
] | |
gr.Interface( | |
fn=generate, | |
inputs=[your_prompt, task_prefix, max_new_tokens, repetition_penalty, temperature, model_precision_type, top_p, top_k, seed], | |
outputs=gr.Textbox(label="Better Prompt"), | |
title="SuperPrompt-v1", | |
description='Make your prompts more detailed! <br> <a href="https://github.com/Nick088Official/SuperPrompt-v1">Github Repository & Model used</a> <br> <a href="https://brianfitzgerald.xyz/prompt-augmentation/">Model Blog</a> <br> Hugging Face Space made by [Nick088](https://linktr.ee/Nick088)', | |
examples=examples, | |
).launch(share=True) |