File size: 10,595 Bytes
b971d47
 
 
 
 
 
cb6da82
b971d47
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb6da82
 
 
 
b971d47
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb6da82
 
 
 
b971d47
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
import argparse, pickle
import logging
import os, random
import numpy as np
import torch
import torchaudio
import devicetorch

from data.tokenizer import (
    AudioTokenizer,
    TextTokenizer,
    tokenize_audio,
    tokenize_text
)

from models import voicecraft
import argparse, time, tqdm

# this script only works for the musicgen architecture
def get_args():
    parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
    parser.add_argument("--manifest_fn", type=str, default="path/to/eval_metadata_file")
    parser.add_argument("--audio_root", type=str, default="path/to/audio_folder")
    parser.add_argument("--exp_dir", type=str, default="path/to/model_folder")
    parser.add_argument("--left_margin", type=float, default=0.08, help="extra space on the left to the word boundary")
    parser.add_argument("--right_margin", type=float, default=0.08, help="extra space on the right to the word boundary")
    parser.add_argument("--seed", type=int, default=1)
    parser.add_argument("--codec_audio_sr", type=int, default=16000, help='the sample rate of audio that the codec is trained for')
    parser.add_argument("--codec_sr", type=int, default=50, help='the sample rate of the codec codes')
    parser.add_argument("--top_k", type=int, default=-1, help="sampling param")
    parser.add_argument("--top_p", type=float, default=0.8, help="sampling param")
    parser.add_argument("--temperature", type=float, default=1.0, help="sampling param")
    parser.add_argument("--output_dir", type=str, default=None)
    parser.add_argument("--device", type=str, default="cuda")
    parser.add_argument("--signature", type=str, default=None, help="path to the encodec model")
    parser.add_argument("--stop_repetition", type=int, default=2, help="used for inference, when the number of consecutive repetition of a token is bigger than this, stop it")
    parser.add_argument("--kvcache", type=int, default=1, help='if true, use kv cache, which is 4-8x faster than without')
    parser.add_argument("--silence_tokens", type=str, default="[1388,1898,131]", help="note that if you are not using the pretrained encodec 6f79c6a8, make sure you specified it yourself, rather than using the default")
    return parser.parse_args()

@torch.no_grad()
def inference_one_sample(model, model_args, phn2num, text_tokenizer, audio_tokenizer, audio_fn, target_text, mask_interval, device, decode_config):
    # phonemize
    text_tokens = [phn2num[phn] for phn in
            tokenize_text(
                text_tokenizer, text=target_text.strip()
            ) if phn in phn2num
        ]
    text_tokens = torch.LongTensor(text_tokens).unsqueeze(0)
    text_tokens_lens = torch.LongTensor([text_tokens.shape[-1]])

    encoded_frames = tokenize_audio(audio_tokenizer, audio_fn)
    original_audio = encoded_frames[0][0].transpose(2,1) # [1,T,K]
    assert original_audio.ndim==3 and original_audio.shape[0] == 1 and original_audio.shape[2] == model_args.n_codebooks, original_audio.shape
    logging.info(f"with direct encodec encoding before input, original audio length: {original_audio.shape[1]} codec frames, which is {original_audio.shape[1]/decode_config['codec_sr']:.2f} sec.")

    # forward
    stime = time.time()
    encoded_frames = model.inference(
        text_tokens.to(device),
        text_tokens_lens.to(device),
        original_audio[...,:model_args.n_codebooks].to(device), # [1,T,8]
        mask_interval=mask_interval.unsqueeze(0).to(device),
        top_k=decode_config['top_k'],
        top_p=decode_config['top_p'],
        temperature=decode_config['temperature'],
        stop_repetition=decode_config['stop_repetition'],
        kvcache=decode_config['kvcache'],
        silence_tokens=eval(decode_config['silence_tokens']) if type(decode_config['silence_tokens']) == str else decode_config['silence_tokens'],
    ) # output is [1,K,T]
    logging.info(f"inference on one sample take: {time.time() - stime:.4f} sec.")
    if type(encoded_frames) == tuple:
        encoded_frames = encoded_frames[0]
    logging.info(f"generated encoded_frames.shape: {encoded_frames.shape}, which is {encoded_frames.shape[-1]/decode_config['codec_sr']} sec.")
    

    # decode (both original and generated)
    original_sample = audio_tokenizer.decode(
        [(original_audio.transpose(2,1), None)] # [1,T,8] -> [1,8,T]
    )
    generated_sample = audio_tokenizer.decode(
        [(encoded_frames, None)]
    )

    return original_sample, generated_sample

def get_model(exp_dir, device=None):
    with open(os.path.join(exp_dir, "args.pkl"), "rb") as f:
        model_args = pickle.load(f)

    logging.info("load model weights...")
    model = voicecraft.VoiceCraft(model_args)
    ckpt_fn = os.path.join(exp_dir, "best_bundle.pth")
    ckpt = torch.load(ckpt_fn, map_location='cpu')['model']
    phn2num = torch.load(ckpt_fn, map_location='cpu')['phn2num']
    model.load_state_dict(ckpt)
    del ckpt
    logging.info("done loading weights...")
    if device == None:
        device = devicetorch(torch)
#        device = torch.device("cpu")
#        if torch.cuda.is_available():
#            device = torch.device("cuda:0")
    model.to(device)
    model.eval()
    return model, model_args, phn2num


def get_mask_interval(ali_fn, word_span_ind, editType):
    with open(ali_fn, "r") as rf:
        data = [l.strip().split(",") for l in rf.readlines()]
        data = data[1:]
    tmp = word_span_ind.split(",")
    s, e = int(tmp[0]), int(tmp[-1])
    start = None
    for j, item in enumerate(data):
        if j == s and item[3] == "words":
            if editType == 'insertion':
                start = float(item[1])
            else:
                start = float(item[0])
        if j == e and item[3] == "words":
            if editType == 'insertion':
                end = float(item[0])
            else:
                end = float(item[1])
            assert start != None
            break
    return (start, end)

if __name__ == "__main__":
    def seed_everything(seed):
        os.environ['PYTHONHASHSEED'] = str(seed)
        random.seed(seed)
        np.random.seed(seed)
        torch.manual_seed(seed)
        if device == "cuda":
            torch.cuda.manual_seed(seed)
        elif device == "mps":
            torch.mps.manual_seed(seed)
        torch.backends.cudnn.benchmark = False
        torch.backends.cudnn.deterministic = True
    formatter = (
        "%(asctime)s [%(levelname)s] %(filename)s:%(lineno)d || %(message)s"
    )
    logging.basicConfig(format=formatter, level=logging.INFO)
    args = get_args()
    # args.device = 'cpu'
    args.allowed_repeat_tokens = eval(args.allowed_repeat_tokens)
    seed_everything(args.seed)

    # load model
    stime = time.time()
    logging.info(f"loading model from {args.exp_dir}")
    model, model_args, phn2num = get_model(args.exp_dir)
    if not os.path.isfile(model_args.exp_dir):
        model_args.exp_dir = args.exp_dir
    logging.info(f"loading model done, took {time.time() - stime:.4f} sec")

    # setup text and audio tokenizer
    text_tokenizer = TextTokenizer(backend="espeak")
    audio_tokenizer = AudioTokenizer(signature=args.signature) # will also put the neural codec model on gpu

    with open(args.manifest_fn, "r") as rf:
        manifest = [l.strip().split("\t") for l in rf.readlines()]
    manifest = manifest[1:]
    
    # wav_fn	txt_fn	alingment_fn	num_words	word_span_ind
    audio_fns = []
    target_texts = []
    mask_intervals = []
    edit_types = []
    new_spans = []
    orig_spans = []
    os.makedirs(args.output_dir, exist_ok=True)
    if args.crop_concat:
        mfa_temp = f"{args.output_dir}/mfa_temp"
        os.makedirs(mfa_temp, exist_ok=True)
    for item in manifest:
        audio_fn = os.path.join(args.audio_root, item[0])
        temp = torchaudio.info(audio_fn)
        audio_dur = temp.num_frames/temp.sample_rate
        audio_fns.append(audio_fn)
        target_text = item[2].split("|")[-1]
        edit_types.append(item[5].split("|"))
        new_spans.append(item[4].split("|"))
        orig_spans.append(item[3].split("|"))
        target_texts.append(target_text) # the last transcript is the target
        # mi needs to be created from word_ind_span and alignment_fn, along with args.left_margin and args.right_margin
        mis = []
        all_ind_intervals = item[3].split("|")
        editTypes = item[5].split("|")
        smaller_indx = []
        alignment_fn = os.path.join(args.audio_root, "aligned", item[0].replace(".wav", ".csv"))
        if not os.path.isfile(alignment_fn):
            alignment_fn = alignment_fn.replace("/aligned/", "/aligned_csv/")
            assert os.path.isfile(alignment_fn), alignment_fn
        for ind_inter,editType in zip(all_ind_intervals, editTypes):
            # print(ind_inter)
            mi = get_mask_interval(alignment_fn, ind_inter, editType)
            mi = (max(mi[0] - args.left_margin, 1/args.codec_sr), min(mi[1] + args.right_margin, audio_dur)) # in seconds
            mis.append(mi)
            smaller_indx.append(mi[0])
        ind = np.argsort(smaller_indx)
        mis = [mis[id] for id in ind]
        mask_intervals.append(mis)



    for i, (audio_fn, target_text, mask_interval) in enumerate(tqdm.tqdm(zip(audio_fns, target_texts, mask_intervals))):
        orig_mask_interval = mask_interval
        mask_interval = [[round(cmi[0]*args.codec_sr), round(cmi[1]*args.codec_sr)] for cmi in mask_interval]
        # logging.info(f"i: {i}, mask_interval: {mask_interval}")
        mask_interval = torch.LongTensor(mask_interval) # [M,2]
        orig_audio, new_audio = inference_one_sample(model, model_args, phn2num, text_tokenizer, audio_tokenizer, audio_fn, target_text, mask_interval, args.device, vars(args))
        
        # save segments for comparison
        orig_audio, new_audio = orig_audio[0].cpu(), new_audio[0].cpu()
        # logging.info(f"length of the resynthesize orig audio: {orig_audio.shape}")

        save_fn_new = f"{args.output_dir}/{os.path.basename(audio_fn)[:-4]}_new_seed{args.seed}.wav"
        
        torchaudio.save(save_fn_new, new_audio, args.codec_audio_sr)

        save_fn_orig = f"{args.output_dir}/{os.path.basename(audio_fn)[:-4]}_orig.wav"
        if not os.path.isfile(save_fn_orig):
            orig_audio, orig_sr = torchaudio.load(audio_fn)
            if orig_sr != args.codec_audio_sr:
                orig_audio = torchaudio.transforms.Resample(orig_sr, args.codec_audio_sr)(orig_audio)
            torchaudio.save(save_fn_orig, orig_audio, args.codec_audio_sr)