Spaces:
Runtime error
Runtime error
cocktailpeanut
commited on
Commit
•
15f0453
1
Parent(s):
8c19a23
update
Browse files
app.py
CHANGED
@@ -62,10 +62,13 @@ with open("defaults_data.json", "r") as file:
|
|
62 |
#device = "cuda"
|
63 |
if torch.cuda.is_available():
|
64 |
device = "cuda"
|
|
|
65 |
elif torch.backends.mps.is_available():
|
66 |
device = "mps"
|
|
|
67 |
else:
|
68 |
device = "cpu"
|
|
|
69 |
|
70 |
state_dicts = {}
|
71 |
|
@@ -118,13 +121,13 @@ controlnet_path = f'data/checkpoints/ControlNetModel'
|
|
118 |
|
119 |
# load IdentityNet
|
120 |
st = time.time()
|
121 |
-
identitynet = ControlNetModel.from_pretrained(controlnet_path, torch_dtype=
|
122 |
-
zoedepthnet = ControlNetModel.from_pretrained("diffusers/controlnet-zoe-depth-sdxl-1.0",torch_dtype=
|
123 |
et = time.time()
|
124 |
elapsed_time = et - st
|
125 |
print('Loading ControlNet took: ', elapsed_time, 'seconds')
|
126 |
st = time.time()
|
127 |
-
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=
|
128 |
et = time.time()
|
129 |
elapsed_time = et - st
|
130 |
print('Loading VAE took: ', elapsed_time, 'seconds')
|
@@ -132,7 +135,7 @@ st = time.time()
|
|
132 |
pipe = StableDiffusionXLInstantIDImg2ImgPipeline.from_pretrained("rubbrband/albedobaseXL_v21",
|
133 |
vae=vae,
|
134 |
controlnet=[identitynet, zoedepthnet],
|
135 |
-
torch_dtype=
|
136 |
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config, use_karras_sigmas=True)
|
137 |
pipe.load_ip_adapter_instantid(face_adapter)
|
138 |
pipe.set_ip_adapter_scale(0.8)
|
@@ -225,7 +228,7 @@ def merge_incompatible_lora(full_path_lora, lora_scale):
|
|
225 |
for_inference=True,
|
226 |
)
|
227 |
lora_model.merge_to(
|
228 |
-
pipe.text_encoder, pipe.unet, weights_sd,
|
229 |
)
|
230 |
del weights_sd
|
231 |
del lora_model
|
|
|
62 |
#device = "cuda"
|
63 |
if torch.cuda.is_available():
|
64 |
device = "cuda"
|
65 |
+
dtype = torch.float16
|
66 |
elif torch.backends.mps.is_available():
|
67 |
device = "mps"
|
68 |
+
dtype = torch.float32
|
69 |
else:
|
70 |
device = "cpu"
|
71 |
+
dtype = torch.float32
|
72 |
|
73 |
state_dicts = {}
|
74 |
|
|
|
121 |
|
122 |
# load IdentityNet
|
123 |
st = time.time()
|
124 |
+
identitynet = ControlNetModel.from_pretrained(controlnet_path, torch_dtype=dtype)
|
125 |
+
zoedepthnet = ControlNetModel.from_pretrained("diffusers/controlnet-zoe-depth-sdxl-1.0",torch_dtype=dtype)
|
126 |
et = time.time()
|
127 |
elapsed_time = et - st
|
128 |
print('Loading ControlNet took: ', elapsed_time, 'seconds')
|
129 |
st = time.time()
|
130 |
+
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=dtype)
|
131 |
et = time.time()
|
132 |
elapsed_time = et - st
|
133 |
print('Loading VAE took: ', elapsed_time, 'seconds')
|
|
|
135 |
pipe = StableDiffusionXLInstantIDImg2ImgPipeline.from_pretrained("rubbrband/albedobaseXL_v21",
|
136 |
vae=vae,
|
137 |
controlnet=[identitynet, zoedepthnet],
|
138 |
+
torch_dtype=dtype)
|
139 |
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config, use_karras_sigmas=True)
|
140 |
pipe.load_ip_adapter_instantid(face_adapter)
|
141 |
pipe.set_ip_adapter_scale(0.8)
|
|
|
228 |
for_inference=True,
|
229 |
)
|
230 |
lora_model.merge_to(
|
231 |
+
pipe.text_encoder, pipe.unet, weights_sd, dtype, device
|
232 |
)
|
233 |
del weights_sd
|
234 |
del lora_model
|