multimodalart HF staff commited on
Commit
a63aff9
1 Parent(s): 856c9dc

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +2 -1
app.py CHANGED
@@ -258,7 +258,8 @@ def run_lora(face_image, prompt, negative, lora_scale, selected_state, sdxl_lora
258
  #Add the textual inversion embeddings from pivotal tuning models
259
  text_embedding_name = sdxl_loras[selected_state.index]["text_embedding_weights"]
260
  embedding_path = hf_hub_download(repo_id=repo_name, filename=text_embedding_name, repo_type="model")
261
- state_dict_embedding = load_file(text_embedding_name)
 
262
  pipe.load_textual_inversion(state_dict_embedding["clip_l"], token=["<s0>", "<s1>"], text_encoder=pipe.text_encoder, tokenizer=pipe.tokenizer)
263
  pipe.load_textual_inversion(state_dict_embedding["clip_g"], token=["<s0>", "<s1>"], text_encoder=pipe.text_encoder_2, tokenizer=pipe.tokenizer_2)
264
 
 
258
  #Add the textual inversion embeddings from pivotal tuning models
259
  text_embedding_name = sdxl_loras[selected_state.index]["text_embedding_weights"]
260
  embedding_path = hf_hub_download(repo_id=repo_name, filename=text_embedding_name, repo_type="model")
261
+ state_dict_embedding = load_file(embedding_path)
262
+ print(state_dict_embedding)
263
  pipe.load_textual_inversion(state_dict_embedding["clip_l"], token=["<s0>", "<s1>"], text_encoder=pipe.text_encoder, tokenizer=pipe.tokenizer)
264
  pipe.load_textual_inversion(state_dict_embedding["clip_g"], token=["<s0>", "<s1>"], text_encoder=pipe.text_encoder_2, tokenizer=pipe.tokenizer_2)
265