File size: 20,786 Bytes
82d5f8b
75e9ff1
89518a7
8a9db1e
81e0a1c
315fa0c
 
 
 
82d5f8b
 
 
28c720a
82d5f8b
 
0a3525d
 
12b4214
 
0a3525d
 
6921279
0a3525d
 
 
 
abfe079
f2e9dae
abfe079
dea01c6
abfe079
0a3525d
 
 
12b4214
0a3525d
69e8a46
 
 
 
 
 
 
 
 
 
0a3525d
 
 
 
 
 
 
28c720a
 
469209d
0a3525d
 
 
cc26db1
 
0a3525d
69e8a46
 
0a3525d
 
 
9bfe4ad
28c720a
 
0a3525d
 
 
 
12b4214
 
 
 
 
 
 
 
 
 
 
 
0a3525d
 
 
12b4214
 
0a3525d
 
 
 
 
12b4214
 
0a3525d
 
 
 
 
 
 
 
 
 
b54e761
0a3525d
 
69e8a46
 
 
b54e761
69e8a46
 
0a3525d
 
69e8a46
 
 
 
 
 
0a3525d
 
12b4214
69e8a46
0a3525d
 
 
 
 
 
 
 
69e8a46
0a3525d
 
 
 
69e8a46
 
 
 
 
 
12b4214
 
69e8a46
 
75e9ff1
69e8a46
 
798ede2
d879c3f
75e9ff1
69e8a46
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d879c3f
69e8a46
d879c3f
69e8a46
 
 
 
f2e9dae
 
 
69e8a46
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
315fa0c
69e8a46
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
315fa0c
69e8a46
 
 
 
 
 
 
 
 
 
 
 
 
4bb1f5a
69e8a46
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
75e9ff1
0a3525d
69e8a46
 
0a3525d
69e8a46
 
 
 
 
0a3525d
69e8a46
 
 
 
 
 
 
f2e9dae
 
 
69e8a46
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0a3525d
 
 
 
 
 
 
 
 
 
69e8a46
 
0a3525d
 
 
 
 
 
69e8a46
 
 
 
 
 
 
 
0a3525d
 
 
69e8a46
b7fff67
 
69e8a46
 
 
 
 
 
 
 
 
 
 
0a3525d
69e8a46
0a3525d
69e8a46
574a682
0a3525d
 
 
 
69e8a46
 
 
537a375
0a3525d
 
 
 
69e8a46
 
 
 
 
0a3525d
 
 
 
69e8a46
 
 
0a3525d
 
 
 
 
69e8a46
 
0a3525d
 
 
 
c1800f5
 
 
 
0a3525d
c1800f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0a3525d
c1800f5
 
 
 
 
0a3525d
69e8a46
 
 
 
 
 
 
0a3525d
 
 
69e8a46
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0a3525d
69e8a46
 
 
 
 
 
 
 
0a3525d
 
 
69e8a46
 
 
 
 
0a3525d
 
69e8a46
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c1800f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0a3525d
 
69e8a46
0a3525d
69e8a46
0a3525d
 
 
 
 
 
 
 
69e8a46
 
0a3525d
69e8a46
662d788
0a3525d
 
 
 
 
 
 
 
 
28c720a
0a3525d
 
69e8a46
0a3525d
28c720a
0a3525d
69e8a46
f2e9dae
 
0a3525d
20a26d0
 
12b4214
69e8a46
0a3525d
 
 
 
 
 
 
 
 
12b4214
0a3525d
 
 
 
 
 
 
69e8a46
 
 
0a3525d
 
 
69e8a46
0a3525d
 
69e8a46
 
 
 
 
 
 
537a375
69e8a46
 
 
 
0a3525d
 
 
 
 
69e8a46
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
import os
import queue
from huggingface_hub import snapshot_download
import hydra
import numpy as np
import wave
import io
import pyrootutils
import gc

# Download if not exists
os.makedirs("checkpoints", exist_ok=True)
snapshot_download(repo_id="fishaudio/fish-speech-1.4", local_dir="./checkpoints/fish-speech-1.4")

print("All checkpoints downloaded")

import html
import os
import threading
from argparse import ArgumentParser
from pathlib import Path
from functools import partial

import gradio as gr
import librosa
import torch
import torchaudio
import devicetorch

torchaudio.set_audio_backend("soundfile")

from loguru import logger
from transformers import AutoTokenizer

from tools.llama.generate import launch_thread_safe_queue
from tools.vqgan.inference import load_model as load_vqgan_model
from fish_speech.text.chn_text_norm.text import Text as ChnNormedText
from tools.api import decode_vq_tokens, encode_reference
from tools.auto_rerank import batch_asr, calculate_wer, is_chinese, load_model
from tools.llama.generate import (
    GenerateRequest,
    GenerateResponse,
    WrappedGenerateResponse,
    launch_thread_safe_queue,
)
from tools.vqgan.inference import load_model as load_decoder_model

# Make einx happy
os.environ["EINX_FILTER_TRACEBACK"] = "false"


HEADER_MD = """# Fish Speech

## The demo in this space is version 1.4, Please check [Fish Audio](https://fish.audio) for the best model.
## 该 Demo 为 Fish Speech 1.4 版本, 请在 [Fish Audio](https://fish.audio) 体验最新 DEMO.

A text-to-speech model based on VQ-GAN and Llama developed by [Fish Audio](https://fish.audio).  
由 [Fish Audio](https://fish.audio) 研发的基于 VQ-GAN 和 Llama 的多语种语音合成. 

You can find the source code [here](https://github.com/fishaudio/fish-speech) and models [here](https://huggingface.co/fishaudio/fish-speech-1.4).  
你可以在 [这里](https://github.com/fishaudio/fish-speech) 找到源代码和 [这里](https://huggingface.co/fishaudio/fish-speech-1.4) 找到模型.  

Related code and weights are released under CC BY-NC-SA 4.0 License.  
相关代码,权重使用 CC BY-NC-SA 4.0 许可证发布.

We are not responsible for any misuse of the model, please consider your local laws and regulations before using it.  
我们不对模型的任何滥用负责,请在使用之前考虑您当地的法律法规.

The model running in this WebUI is Fish Speech V1.4 Medium.
在此 WebUI 中运行的模型是 Fish Speech V1.4 Medium.
"""

TEXTBOX_PLACEHOLDER = """Put your text here. 在此处输入文本."""

try:
    import spaces

    GPU_DECORATOR = spaces.GPU
except ImportError:

    def GPU_DECORATOR(func):
        def wrapper(*args, **kwargs):
            return func(*args, **kwargs)

        return wrapper


def build_html_error_message(error):
    return f"""
    <div style="color: red; 
    font-weight: bold;">
        {html.escape(error)}
    </div>
    """


@GPU_DECORATOR
@torch.inference_mode()
def inference(
    text,
    enable_reference_audio,
    reference_audio,
    reference_text,
    max_new_tokens,
    chunk_length,
    top_p,
    repetition_penalty,
    temperature,
    streaming=False
):
    if args.max_gradio_length > 0 and len(text) > args.max_gradio_length:
        return (
            None,
            None,
            "Text is too long, please keep it under {} characters.".format(
                args.max_gradio_length
            ),
        )

    # Parse reference audio aka prompt
    prompt_tokens = encode_reference(
        decoder_model=decoder_model,
        reference_audio=reference_audio,
        enable_reference_audio=enable_reference_audio,
    )

    # LLAMA Inference
    request = dict(
        device=decoder_model.device,
        max_new_tokens=max_new_tokens,
        text=text,
        top_p=top_p,
        repetition_penalty=repetition_penalty,
        temperature=temperature,
        compile=args.compile,
        iterative_prompt=chunk_length > 0,
        chunk_length=chunk_length,
        max_length=2048,
        prompt_tokens=prompt_tokens if enable_reference_audio else None,
        prompt_text=reference_text if enable_reference_audio else None,
    )

    response_queue = queue.Queue()
    llama_queue.put(
        GenerateRequest(
            request=request,
            response_queue=response_queue,
        )
    )

    segments = []

    while True:
        result: WrappedGenerateResponse = response_queue.get()
        if result.status == "error":
            print(f"result={result}")
            return None, None, build_html_error_message(result.response)

        result: GenerateResponse = result.response
        if result.action == "next":
            break

        with torch.autocast(
            device_type=(
                "cpu"
                if decoder_model.device.type == "mps"
                else decoder_model.device.type
            ),
            dtype=args.precision,
        ):
            fake_audios = decode_vq_tokens(
                decoder_model=decoder_model,
                codes=result.codes,
            )

        fake_audios = fake_audios.float().cpu().numpy()
        segments.append(fake_audios)

    if len(segments) == 0:
        return (
            None,
            None,
            build_html_error_message(
                "No audio generated, please check the input text."
            ),
        )

    # Return the final audio
    audio = np.concatenate(segments, axis=0)
    return None, (decoder_model.spec_transform.sample_rate, audio), None

    if torch.cuda.is_available():
        torch.cuda.empty_cache()
        gc.collect()
    elif torch.backends.mps.is_available():
        torch.mps.empty_cache()
        gc.collect()


def inference_with_auto_rerank(
    text,
    enable_reference_audio,
    reference_audio,
    reference_text,
    max_new_tokens,
    chunk_length,
    top_p,
    repetition_penalty,
    temperature,
    use_auto_rerank,
    streaming=False,
):
    max_attempts = 2 if use_auto_rerank else 1
    best_wer = float("inf")
    best_audio = None
    best_sample_rate = None

    for attempt in range(max_attempts):
        _, (sample_rate, audio), message = inference(
            text,
            enable_reference_audio,
            reference_audio,
            reference_text,
            max_new_tokens,
            chunk_length,
            top_p,
            repetition_penalty,
            temperature,
            streaming=False,
        )

        if audio is None:
            return None, None, message

        if not use_auto_rerank:
            return None, (sample_rate, audio), None

        asr_result = batch_asr(asr_model, [audio], sample_rate)[0]
        wer = calculate_wer(text, asr_result["text"])
        
        if wer <= 0.3 and not asr_result["huge_gap"]:
            return None, (sample_rate, audio), None

        if wer < best_wer:
            best_wer = wer
            best_audio = audio
            best_sample_rate = sample_rate

        if attempt == max_attempts - 1:
            break

    return None, (best_sample_rate, best_audio), None


n_audios = 4

global_audio_list = []
global_error_list = []

def inference_wrapper(
    text,
    enable_reference_audio,
    reference_audio,
    reference_text,
    max_new_tokens,
    chunk_length,
    top_p,
    repetition_penalty,
    temperature,
    batch_infer_num,
    if_load_asr_model,
):
    audios = []
    errors = []

    for _ in range(batch_infer_num):
        result = inference_with_auto_rerank(
            text,
            enable_reference_audio,
            reference_audio,
            reference_text,
            max_new_tokens,
            chunk_length,
            top_p,
            repetition_penalty,
            temperature,
            if_load_asr_model,
        )

        _, audio_data, error_message = result

        audios.append(
            gr.Audio(value=audio_data if audio_data else None, visible=True),
        )
        errors.append(
            gr.HTML(value=error_message if error_message else None, visible=True),
        )

    for _ in range(batch_infer_num, n_audios):
        audios.append(
            gr.Audio(value=None, visible=False),
        )
        errors.append(
            gr.HTML(value=None, visible=False),
        )

    return None, *audios, *errors


def wav_chunk_header(sample_rate=44100, bit_depth=16, channels=1):
    buffer = io.BytesIO()

    with wave.open(buffer, "wb") as wav_file:
        wav_file.setnchannels(channels)
        wav_file.setsampwidth(bit_depth // 8)
        wav_file.setframerate(sample_rate)

    wav_header_bytes = buffer.getvalue()
    buffer.close()
    return wav_header_bytes


def normalize_text(user_input, use_normalization):
    if use_normalization:
        return ChnNormedText(raw_text=user_input).normalize()
    else:
        return user_input


asr_model = None


def change_if_load_asr_model(if_load):
    global asr_model

    if if_load:
        gr.Warning("Loading faster whisper model...")
        if asr_model is None:
            asr_model = load_model()
        return gr.Checkbox(label="Unload faster whisper model", value=if_load)

    if if_load is False:
        gr.Warning("Unloading faster whisper model...")
        del asr_model
        asr_model = None
        if torch.cuda.is_available():
            torch.cuda.empty_cache()
            gc.collect()
        elif torch.backends.mps.is_available():
            torch.mps.empty_cache()
            gc.collect()
        return gr.Checkbox(label="Load faster whisper model", value=if_load)


def change_if_auto_label(if_load, if_auto_label, enable_ref, ref_audio, ref_text):
    if if_load and asr_model is not None:
        if (
            if_auto_label
            and enable_ref
            and ref_audio is not None
            and ref_text.strip() == ""
        ):
            data, sample_rate = librosa.load(ref_audio)
            res = batch_asr(asr_model, [data], sample_rate)[0]
            ref_text = res["text"]
    else:
        gr.Warning("Whisper model not loaded!")

    return gr.Textbox(value=ref_text)


def build_app():
    with gr.Blocks(theme=gr.themes.Base()) as app:
        gr.Markdown(HEADER_MD)

        # Use light theme by default
        app.load(
            None,
            None,
            js="() => {const params = new URLSearchParams(window.location.search);if (!params.has('__theme')) {params.set('__theme', '%s');window.location.search = params.toString();}}"
            % args.theme,
        )

        # Inference
        with gr.Row():
            with gr.Column(scale=3):
                text = gr.Textbox(
                    label="Input Text", placeholder=TEXTBOX_PLACEHOLDER, lines=10
                )
                refined_text = gr.Textbox(
                    label="Realtime Transform Text",
                    placeholder=
                        "Normalization Result Preview (Currently Only Chinese)",
                    lines=5,
                    interactive=False,
                )

                with gr.Row():
                    if_refine_text = gr.Checkbox(
                        label="Text Normalization (ZH)",
                        value=False,
                        scale=1,
                    )

                    if_load_asr_model = gr.Checkbox(
                        label="Load / Unload ASR model for auto-reranking",
                        value=False,
                        scale=3,
                    )

                with gr.Row():
                    with gr.Tab(label="Advanced Config"):
                        chunk_length = gr.Slider(
                            label="Iterative Prompt Length, 0 means off",
                            minimum=0,
                            maximum=500,
                            value=200,
                            step=8,
                        )

                        max_new_tokens = gr.Slider(
                            label="Maximum tokens per batch, 0 means no limit",
                            minimum=0,
                            maximum=2048,
                            value=0,  # 0 means no limit
                            step=8,
                        )

                        top_p = gr.Slider(
                            label="Top-P",
                            minimum=0.6,
                            maximum=0.9,
                            value=0.7,
                            step=0.01,
                        )

                        repetition_penalty = gr.Slider(
                            label="Repetition Penalty",
                            minimum=1,
                            maximum=1.5,
                            value=1.2,
                            step=0.01,
                        )

                        temperature = gr.Slider(
                            label="Temperature",
                            minimum=0.6,
                            maximum=0.9,
                            value=0.7,
                            step=0.01,
                        )

                with gr.Tab(label="Reference Audio"):
                    gr.Markdown(
                        "5 to 10 seconds of reference audio, useful for specifying speaker."
                    )

                    enable_reference_audio = gr.Checkbox(
                        label="Enable Reference Audio",
                    )
                
                    # Add dropdown for selecting example audio files
                    example_audio_files = [f for f in os.listdir("examples") if f.endswith(".wav")]
                    example_audio_dropdown = gr.Dropdown(
                        label="Select Example Audio",
                        choices=[""] + example_audio_files,
                        value=""
                    )
                
                    reference_audio = gr.Audio(
                        label="Reference Audio",
                        type="filepath",
                    )
                    with gr.Row():
                        if_auto_label = gr.Checkbox(
                            label="Auto Labeling",
                            min_width=100,
                            scale=0,
                            value=False,
                        )
                        reference_text = gr.Textbox(
                            label="Reference Text",
                            lines=1,
                            placeholder="在一无所知中,梦里的一天结束了,一个新的「轮回」便会开始。",
                            value="",
                        )
                    with gr.Tab(label="Batch Inference"):
                        batch_infer_num = gr.Slider(
                            label="Batch infer nums",
                            minimum=1,
                            maximum=n_audios,
                            step=1,
                            value=1,
                        )

            with gr.Column(scale=3):
                for _ in range(n_audios):
                    with gr.Row():
                        error = gr.HTML(
                            label="Error Message",
                            visible=True if _ == 0 else False,
                        )
                        global_error_list.append(error)
                    with gr.Row():
                        audio = gr.Audio(
                            label="Generated Audio",
                            type="numpy",
                            interactive=False,
                            visible=True if _ == 0 else False,
                        )
                        global_audio_list.append(audio)

                with gr.Row():
                    stream_audio = gr.Audio(
                        label="Streaming Audio",
                        streaming=True,
                        autoplay=True,
                        interactive=False,
                        show_download_button=True,
                    )
                with gr.Row():
                    with gr.Column(scale=3):
                        generate = gr.Button(
                            value="\U0001F3A7 " + "Generate", variant="primary"
                        )
                        generate_stream = gr.Button(
                            value="\U0001F3A7 " + "Streaming Generate",
                            variant="primary",
                        )

        text.input(
            fn=normalize_text, inputs=[text, if_refine_text], outputs=[refined_text]
        )

        if_load_asr_model.change(
            fn=change_if_load_asr_model,
            inputs=[if_load_asr_model],
            outputs=[if_load_asr_model],
        )

        if_auto_label.change(
            fn=lambda: gr.Textbox(value=""),
            inputs=[],
            outputs=[reference_text],
        ).then(
            fn=change_if_auto_label,
            inputs=[
                if_load_asr_model,
                if_auto_label,
                enable_reference_audio,
                reference_audio,
                reference_text,
            ],
            outputs=[reference_text],
        )
        
        def select_example_audio(audio_file):
            if audio_file:
                audio_path = os.path.join("examples", audio_file)
                lab_file = os.path.splitext(audio_file)[0] + ".lab"
                lab_path = os.path.join("examples", lab_file)
                
                if os.path.exists(lab_path):
                    with open(lab_path, "r", encoding="utf-8") as f:
                        lab_content = f.read().strip()
                else:
                    lab_content = ""
                
                return audio_path, lab_content, True
            return None, "", False

        # Connect the dropdown to update reference audio and text
        example_audio_dropdown.change(
            fn=select_example_audio,
            inputs=[example_audio_dropdown],
            outputs=[reference_audio, reference_text, enable_reference_audio]
        )
        # # Submit
        generate.click(
            inference_wrapper,
            [
                refined_text,
                enable_reference_audio,
                reference_audio,
                reference_text,
                max_new_tokens,
                chunk_length,
                top_p,
                repetition_penalty,
                temperature,
                batch_infer_num,
                if_load_asr_model,
            ],
            [stream_audio, *global_audio_list, *global_error_list],
            concurrency_limit=1,
        )
    return app


def parse_args():
    parser = ArgumentParser()
    parser.add_argument(
        "--llama-checkpoint-path",
        type=Path,
        default="checkpoints/fish-speech-1.4",
    )
    parser.add_argument(
        "--decoder-checkpoint-path",
        type=Path,
        default="checkpoints/fish-speech-1.4/firefly-gan-vq-fsq-8x1024-21hz-generator.pth",
    )
    parser.add_argument("--decoder-config-name", type=str, default="firefly_gan_vq")
    #parser.add_argument("--device", type=str, default="cuda")
    parser.add_argument("--device", type=str, default=devicetorch.get(torch))
    parser.add_argument("--half", action="store_true")
    #parser.add_argument("--compile", action="store_true",default=True)
    parser.add_argument("--compile", action="store_true",default=False)
    parser.add_argument("--max-gradio-length", type=int, default=0)
    parser.add_argument("--theme", type=str, default="light")

    return parser.parse_args()


if __name__ == "__main__":
    args = parse_args()
    args.precision = torch.half if args.half else torch.bfloat16

    logger.info("Loading Llama model...")
    llama_queue = launch_thread_safe_queue(
        checkpoint_path=args.llama_checkpoint_path,
        device=args.device,
        precision=args.precision,
        compile=args.compile,
    )
    logger.info("Llama model loaded, loading VQ-GAN model...")

    decoder_model = load_decoder_model(
        config_name=args.decoder_config_name,
        checkpoint_path=args.decoder_checkpoint_path,
        device=args.device,
    )

    logger.info("Decoder model loaded, warming up...")

    # Dry run to check if the model is loaded correctly and avoid the first-time latency
    list(
        inference(
            text="Hello, world!",
            enable_reference_audio=False,
            reference_audio=None,
            reference_text="",
            max_new_tokens=0,
            chunk_length=200,
            top_p=0.7,
            repetition_penalty=1.2,
            temperature=0.7,
        )
    )

    logger.info("Warming up done, launching the web UI...")

    app = build_app()
    app.launch(show_api=True)