flux / app.py
cocktailpeanut's picture
update
1886af8
raw
history blame
6.7 kB
import gradio as gr
import numpy as np
import random
#import spaces
import torch
import devicetorch
from diffusers import DiffusionPipeline
import os
# Quant
from optimum.quanto import freeze, qfloat8, quantize
from diffusers import FlowMatchEulerDiscreteScheduler, AutoencoderKL
from diffusers.models.transformers.transformer_flux import FluxTransformer2DModel
from diffusers.pipelines.flux.pipeline_flux import FluxPipeline
from transformers import CLIPTextModel, CLIPTokenizer,T5EncoderModel, T5TokenizerFast
DEVICE = devicetorch.get(torch)
#if device == "cuda":
# dtype = torch.bfloat16
#elif device == "mps":
# dtype = torch.float16
#else:
# dtype = torch.float32
##dtype = torch.bfloat16
##device = "cuda" if torch.cuda.is_available() else "cpu"
#
##pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16, revision="refs/pr/1").to(device)
#pipe = DiffusionPipeline.from_pretrained("cocktailpeanut/xulf-s", torch_dtype=dtype).to(device)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048
def init():
global pipe
dtype = torch.bfloat16
# schnell is the distilled turbo model. For the CFG distilled model, use:
# bfl_repo = "black-forest-labs/FLUX.1-dev"
# revision = "refs/pr/3"
#
# The undistilled model that uses CFG ("pro") which can use negative prompts
# was not released.
bfl_repo = "cocktailpeanut/xulf-s"
te_repo = "comfyanonymous/flux_text_encoders"
scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained(bfl_repo, subfolder="scheduler")
#text_encoder = CLIPTextModel.from_pretrained("openai/clip-vit-large-patch14", torch_dtype=dtype)
text_encoder = CLIPTextModel.from_pretrained(os.path.join(os.getcwd(), "flux_text_encoders"), torch_dtype=dtype)
tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14", torch_dtype=dtype)
#text_encoder_2 = T5EncoderModel.from_pretrained(bfl_repo, subfolder="text_encoder_2", torch_dtype=dtype)
text_encoder_2 = T5EncoderModel.from_pretrained(os.path.join(os.getcwd(), "flux_text_encoders"), torch_dtype=dtype)
tokenizer_2 = T5TokenizerFast.from_pretrained(bfl_repo, subfolder="tokenizer_2", torch_dtype=dtype)
vae = AutoencoderKL.from_pretrained(bfl_repo, subfolder="vae", torch_dtype=dtype)
transformer = FluxTransformer2DModel.from_pretrained(bfl_repo, subfolder="transformer", torch_dtype=dtype)
# Experimental: Try this to load in 4-bit for <16GB cards.
#
# from optimum.quanto import qint4
# quantize(transformer, weights=qint4, exclude=["proj_out", "x_embedder", "norm_out", "context_embedder"])
# freeze(transformer)
quantize(transformer, weights=qfloat8)
freeze(transformer)
quantize(text_encoder_2, weights=qfloat8)
freeze(text_encoder_2)
pipe = FluxPipeline(
scheduler=scheduler,
text_encoder=text_encoder,
tokenizer=tokenizer,
text_encoder_2=None,
tokenizer_2=tokenizer_2,
vae=vae,
transformer=None,
)
pipe.text_encoder_2 = text_encoder_2
pipe.transformer = transformer
if DEVICE == "cuda":
pipe.enable_model_cpu_offload()
pipe.to(DEVICE)
# generator = torch.Generator().manual_seed(12345)
# image = pipe(
# prompt='nekomusume cat girl, digital painting',
# width=1024,
# height=1024,
# num_inference_steps=4,
# generator=generator,
# guidance_scale=3.5,
# ).images[0]
#@spaces.GPU()
def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, num_inference_steps=4, progress=gr.Progress(track_tqdm=True)):
global pipe
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
image = pipe(
prompt = prompt,
width = width,
height = height,
num_inference_steps = num_inference_steps,
generator = generator,
guidance_scale=0.0
).images[0]
return image, seed
examples = [
"a tiny astronaut hatching from an egg on the moon",
"a cat holding a sign that says hello world",
"an anime illustration of a wiener schnitzel",
]
css="""
#col-container {
margin: 0 auto;
max-width: 520px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(f"""# FLUX.1 [schnell]
12B param rectified flow transformer distilled from [FLUX.1 [pro]](https://blackforestlabs.ai/) for 4 step generation
[[blog](https://blackforestlabs.ai/2024/07/31/announcing-black-forest-labs/)] [[model](https://huggingface.co/black-forest-labs/FLUX.1-schnell)]
""")
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0)
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced Settings", open=False):
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
with gr.Row():
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=4,
)
gr.Examples(
examples = examples,
fn = infer,
inputs = [prompt],
outputs = [result, seed],
cache_examples="lazy"
)
gr.on(
triggers=[run_button.click, prompt.submit],
fn = infer,
inputs = [prompt, seed, randomize_seed, width, height, num_inference_steps],
outputs = [result, seed]
)
init()
demo.launch()