Spaces:
Runtime error
Runtime error
Commit
·
3c6eab5
1
Parent(s):
7d6f42b
update
Browse files
app.py
CHANGED
@@ -5,6 +5,7 @@ import random
|
|
5 |
import torch
|
6 |
import devicetorch
|
7 |
from diffusers import DiffusionPipeline
|
|
|
8 |
|
9 |
|
10 |
# Quant
|
@@ -46,12 +47,13 @@ def init():
|
|
46 |
bfl_repo = "cocktailpeanut/xulf-s"
|
47 |
te_repo = "comfyanonymous/flux_text_encoders"
|
48 |
|
|
|
49 |
scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained(bfl_repo, subfolder="scheduler")
|
50 |
#text_encoder = CLIPTextModel.from_pretrained("openai/clip-vit-large-patch14", torch_dtype=dtype)
|
51 |
-
text_encoder = CLIPTextModel.from_pretrained("
|
52 |
tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14", torch_dtype=dtype)
|
53 |
#text_encoder_2 = T5EncoderModel.from_pretrained(bfl_repo, subfolder="text_encoder_2", torch_dtype=dtype)
|
54 |
-
text_encoder_2 = T5EncoderModel.from_pretrained("
|
55 |
tokenizer_2 = T5TokenizerFast.from_pretrained(bfl_repo, subfolder="tokenizer_2", torch_dtype=dtype)
|
56 |
vae = AutoencoderKL.from_pretrained(bfl_repo, subfolder="vae", torch_dtype=dtype)
|
57 |
transformer = FluxTransformer2DModel.from_pretrained(bfl_repo, subfolder="transformer", torch_dtype=dtype)
|
|
|
5 |
import torch
|
6 |
import devicetorch
|
7 |
from diffusers import DiffusionPipeline
|
8 |
+
import os
|
9 |
|
10 |
|
11 |
# Quant
|
|
|
47 |
bfl_repo = "cocktailpeanut/xulf-s"
|
48 |
te_repo = "comfyanonymous/flux_text_encoders"
|
49 |
|
50 |
+
|
51 |
scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained(bfl_repo, subfolder="scheduler")
|
52 |
#text_encoder = CLIPTextModel.from_pretrained("openai/clip-vit-large-patch14", torch_dtype=dtype)
|
53 |
+
text_encoder = CLIPTextModel.from_pretrained(os.path.join(os.getcwd(), "flux_text_encoders/clip_l.safetensors"), torch_dtype=dtype)
|
54 |
tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14", torch_dtype=dtype)
|
55 |
#text_encoder_2 = T5EncoderModel.from_pretrained(bfl_repo, subfolder="text_encoder_2", torch_dtype=dtype)
|
56 |
+
text_encoder_2 = T5EncoderModel.from_pretrained(os.path.join(os.getcwd(), "flux_text_encoders/t5xxl_fp8_e4m3fn.safetensors"), torch_dtype=dtype)
|
57 |
tokenizer_2 = T5TokenizerFast.from_pretrained(bfl_repo, subfolder="tokenizer_2", torch_dtype=dtype)
|
58 |
vae = AutoencoderKL.from_pretrained(bfl_repo, subfolder="vae", torch_dtype=dtype)
|
59 |
transformer = FluxTransformer2DModel.from_pretrained(bfl_repo, subfolder="transformer", torch_dtype=dtype)
|