import gradio as gr import numpy as np import random #import spaces import torch import devicetorch from diffusers import DiffusionPipeline import os # Quant from optimum.quanto import freeze, qfloat8, quantize from diffusers import FlowMatchEulerDiscreteScheduler, AutoencoderKL from diffusers.models.transformers.transformer_flux import FluxTransformer2DModel from diffusers.pipelines.flux.pipeline_flux import FluxPipeline from transformers import CLIPTextModel, CLIPTokenizer,T5EncoderModel, T5TokenizerFast DEVICE = devicetorch.get(torch) #if device == "cuda": # dtype = torch.bfloat16 #elif device == "mps": # dtype = torch.float16 #else: # dtype = torch.float32 ##dtype = torch.bfloat16 ##device = "cuda" if torch.cuda.is_available() else "cpu" # ##pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16, revision="refs/pr/1").to(device) #pipe = DiffusionPipeline.from_pretrained("cocktailpeanut/xulf-s", torch_dtype=dtype).to(device) MAX_SEED = np.iinfo(np.int32).max MAX_IMAGE_SIZE = 2048 def init(): global pipe dtype = torch.bfloat16 # schnell is the distilled turbo model. For the CFG distilled model, use: # bfl_repo = "black-forest-labs/FLUX.1-dev" # revision = "refs/pr/3" # # The undistilled model that uses CFG ("pro") which can use negative prompts # was not released. bfl_repo = "cocktailpeanut/xulf-s" te_repo = "comfyanonymous/flux_text_encoders" scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained(bfl_repo, subfolder="scheduler") #text_encoder = CLIPTextModel.from_pretrained("openai/clip-vit-large-patch14", torch_dtype=dtype) text_encoder = CLIPTextModel.from_pretrained(os.path.join(os.getcwd(), "flux_text_encoders/clip_l.safetensors"), torch_dtype=dtype) tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14", torch_dtype=dtype) #text_encoder_2 = T5EncoderModel.from_pretrained(bfl_repo, subfolder="text_encoder_2", torch_dtype=dtype) text_encoder_2 = T5EncoderModel.from_pretrained(os.path.join(os.getcwd(), "flux_text_encoders/t5xxl_fp8_e4m3fn.safetensors"), torch_dtype=dtype) tokenizer_2 = T5TokenizerFast.from_pretrained(bfl_repo, subfolder="tokenizer_2", torch_dtype=dtype) vae = AutoencoderKL.from_pretrained(bfl_repo, subfolder="vae", torch_dtype=dtype) transformer = FluxTransformer2DModel.from_pretrained(bfl_repo, subfolder="transformer", torch_dtype=dtype) # Experimental: Try this to load in 4-bit for <16GB cards. # # from optimum.quanto import qint4 # quantize(transformer, weights=qint4, exclude=["proj_out", "x_embedder", "norm_out", "context_embedder"]) # freeze(transformer) quantize(transformer, weights=qfloat8) freeze(transformer) quantize(text_encoder_2, weights=qfloat8) freeze(text_encoder_2) pipe = FluxPipeline( scheduler=scheduler, text_encoder=text_encoder, tokenizer=tokenizer, text_encoder_2=None, tokenizer_2=tokenizer_2, vae=vae, transformer=None, ) pipe.text_encoder_2 = text_encoder_2 pipe.transformer = transformer if DEVICE == "cuda": pipe.enable_model_cpu_offload() pipe.to(DEVICE) # generator = torch.Generator().manual_seed(12345) # image = pipe( # prompt='nekomusume cat girl, digital painting', # width=1024, # height=1024, # num_inference_steps=4, # generator=generator, # guidance_scale=3.5, # ).images[0] #@spaces.GPU() def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, num_inference_steps=4, progress=gr.Progress(track_tqdm=True)): global pipe if randomize_seed: seed = random.randint(0, MAX_SEED) generator = torch.Generator().manual_seed(seed) image = pipe( prompt = prompt, width = width, height = height, num_inference_steps = num_inference_steps, generator = generator, guidance_scale=0.0 ).images[0] return image, seed examples = [ "a tiny astronaut hatching from an egg on the moon", "a cat holding a sign that says hello world", "an anime illustration of a wiener schnitzel", ] css=""" #col-container { margin: 0 auto; max-width: 520px; } """ with gr.Blocks(css=css) as demo: with gr.Column(elem_id="col-container"): gr.Markdown(f"""# FLUX.1 [schnell] 12B param rectified flow transformer distilled from [FLUX.1 [pro]](https://blackforestlabs.ai/) for 4 step generation [[blog](https://blackforestlabs.ai/2024/07/31/announcing-black-forest-labs/)] [[model](https://huggingface.co/black-forest-labs/FLUX.1-schnell)] """) with gr.Row(): prompt = gr.Text( label="Prompt", show_label=False, max_lines=1, placeholder="Enter your prompt", container=False, ) run_button = gr.Button("Run", scale=0) result = gr.Image(label="Result", show_label=False) with gr.Accordion("Advanced Settings", open=False): seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, ) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) with gr.Row(): width = gr.Slider( label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024, ) height = gr.Slider( label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024, ) with gr.Row(): num_inference_steps = gr.Slider( label="Number of inference steps", minimum=1, maximum=50, step=1, value=4, ) gr.Examples( examples = examples, fn = infer, inputs = [prompt], outputs = [result, seed], cache_examples="lazy" ) gr.on( triggers=[run_button.click, prompt.submit], fn = infer, inputs = [prompt, seed, randomize_seed, width, height, num_inference_steps], outputs = [result, seed] ) init() demo.launch()