Spaces:
Runtime error
Runtime error
File size: 16,560 Bytes
7a86a0a ad2d8cc 7a86a0a ad2d8cc 7a86a0a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 |
import glob
import os
import numpy as np
import cv2
from pathlib import Path
import torch
import torch.nn as nn
import torchvision.transforms as T
import argparse
from PIL import Image
import yaml
from tqdm import tqdm
from transformers import logging
from diffusers import DDIMScheduler, StableDiffusionPipeline
from tokenflow_utils import *
from utils import save_video, seed_everything
# suppress partial model loading warning
logging.set_verbosity_error()
VAE_BATCH_SIZE = 10
class TokenFlow(nn.Module):
def __init__(self, config,
pipe,
frames=None,
# latents = None,
inverted_latents = None):
super().__init__()
self.config = config
self.device = config["device"]
sd_version = config["sd_version"]
self.sd_version = sd_version
if sd_version == '2.1':
model_key = "stabilityai/stable-diffusion-2-1-base"
elif sd_version == '2.0':
model_key = "stabilityai/stable-diffusion-2-base"
elif sd_version == '1.5':
model_key = "runwayml/stable-diffusion-v1-5"
elif sd_version == 'depth':
model_key = "stabilityai/stable-diffusion-2-depth"
else:
raise ValueError(f'Stable-diffusion version {sd_version} not supported.')
# Create SD models
print('Loading SD model')
# pipe = StableDiffusionPipeline.from_pretrained(model_key, torch_dtype=torch.float16).to("cuda")
# pipe.enable_xformers_memory_efficient_attention()
self.vae = pipe.vae
self.tokenizer = pipe.tokenizer
self.text_encoder = pipe.text_encoder
self.unet = pipe.unet
self.scheduler = DDIMScheduler.from_pretrained(model_key, subfolder="scheduler")
self.scheduler.set_timesteps(config["n_timesteps"], device=self.device)
print('SD model loaded')
# data
self.frames, self.inverted_latents = frames, inverted_latents
self.latents_path = self.get_latents_path()
# load frames
self.paths, self.frames, self.latents, self.eps = self.get_data()
if self.sd_version == 'depth':
self.depth_maps = self.prepare_depth_maps()
self.text_embeds = self.get_text_embeds(config["prompt"], config["negative_prompt"])
# pnp_inversion_prompt = self.get_pnp_inversion_prompt()
self.pnp_guidance_embeds = self.get_text_embeds(config["pnp_inversion_prompt"], config["pnp_inversion_prompt"]).chunk(2)[0]
@torch.no_grad()
def prepare_depth_maps(self, model_type='DPT_Large', device='cuda'):
depth_maps = []
midas = torch.hub.load("intel-isl/MiDaS", model_type)
midas.to(self.device)
midas.eval()
midas_transforms = torch.hub.load("intel-isl/MiDaS", "transforms")
if model_type == "DPT_Large" or model_type == "DPT_Hybrid":
transform = midas_transforms.dpt_transform
else:
transform = midas_transforms.small_transform
for i in range(len(self.paths)):
img = cv2.imread(self.paths[i])
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
latent_h = img.shape[0] // 8
latent_w = img.shape[1] // 8
input_batch = transform(img).to(self.device)
prediction = midas(input_batch)
depth_map = torch.nn.functional.interpolate(
prediction.unsqueeze(1),
size=(latent_h, latent_w),
mode="bicubic",
align_corners=False,
)
depth_min = torch.amin(depth_map, dim=[1, 2, 3], keepdim=True)
depth_max = torch.amax(depth_map, dim=[1, 2, 3], keepdim=True)
depth_map = 2.0 * (depth_map - depth_min) / (depth_max - depth_min) - 1.0
depth_maps.append(depth_map)
return torch.cat(depth_maps).to(torch.float16).to(self.device)
def get_pnp_inversion_prompt(self):
inv_prompts_path = os.path.join(str(Path(self.latents_path).parent), 'inversion_prompt.txt')
# read inversion prompt
with open(inv_prompts_path, 'r') as f:
inv_prompt = f.read()
return inv_prompt
def get_latents_path(self):
read_from_files = self.frames is None
# read_from_files = True
if read_from_files:
latents_path = os.path.join(self.config["latents_path"], f'sd_{self.config["sd_version"]}',
Path(self.config["data_path"]).stem, f'steps_{self.config["n_inversion_steps"]}')
latents_path = [x for x in glob.glob(f'{latents_path}/*') if '.' not in Path(x).name]
n_frames = [int([x for x in latents_path[i].split('/') if 'nframes' in x][0].split('_')[1]) for i in range(len(latents_path))]
print("n_frames", n_frames)
latents_path = latents_path[np.argmax(n_frames)]
print("latents_path", latents_path)
self.config["n_frames"] = min(max(n_frames), self.config["n_frames"])
else:
n_frames = self.frames.shape[0]
self.config["n_frames"] = min(n_frames, self.config["n_frames"])
if self.config["n_frames"] % self.config["batch_size"] != 0:
# make n_frames divisible by batch_size
self.config["n_frames"] = self.config["n_frames"] - (self.config["n_frames"] % self.config["batch_size"])
print("Number of frames: ", self.config["n_frames"])
if read_from_files:
print("YOOOOOOO", os.path.join(latents_path, 'latents'))
return os.path.join(latents_path, 'latents')
else:
return None
@torch.no_grad()
def get_text_embeds(self, prompt, negative_prompt, batch_size=1):
# Tokenize text and get embeddings
text_input = self.tokenizer(prompt, padding='max_length', max_length=self.tokenizer.model_max_length,
truncation=True, return_tensors='pt')
text_embeddings = self.text_encoder(text_input.input_ids.to(self.device))[0]
# Do the same for unconditional embeddings
uncond_input = self.tokenizer(negative_prompt, padding='max_length', max_length=self.tokenizer.model_max_length,
return_tensors='pt')
uncond_embeddings = self.text_encoder(uncond_input.input_ids.to(self.device))[0]
# Cat for final embeddings
text_embeddings = torch.cat([uncond_embeddings] * batch_size + [text_embeddings] * batch_size)
return text_embeddings
@torch.no_grad()
def encode_imgs(self, imgs, batch_size=VAE_BATCH_SIZE, deterministic=False):
imgs = 2 * imgs - 1
latents = []
for i in range(0, len(imgs), batch_size):
posterior = self.vae.encode(imgs[i:i + batch_size]).latent_dist
latent = posterior.mean if deterministic else posterior.sample()
latents.append(latent * 0.18215)
latents = torch.cat(latents)
return latents
@torch.no_grad()
def decode_latents(self, latents, batch_size=VAE_BATCH_SIZE):
latents = 1 / 0.18215 * latents
imgs = []
for i in range(0, len(latents), batch_size):
imgs.append(self.vae.decode(latents[i:i + batch_size]).sample)
imgs = torch.cat(imgs)
imgs = (imgs / 2 + 0.5).clamp(0, 1)
return imgs
def get_data(self):
read_from_files = self.frames is None
# read_from_files = True
if read_from_files:
# load frames
paths = [os.path.join(self.config["data_path"], "%05d.jpg" % idx) for idx in
range(self.config["n_frames"])]
if not os.path.exists(paths[0]):
paths = [os.path.join(self.config["data_path"], "%05d.png" % idx) for idx in
range(self.config["n_frames"])]
frames = [Image.open(paths[idx]).convert('RGB') for idx in range(self.config["n_frames"])]
if frames[0].size[0] == frames[0].size[1]:
frames = [frame.resize((512, 512), resample=Image.Resampling.LANCZOS) for frame in frames]
frames = torch.stack([T.ToTensor()(frame) for frame in frames]).to(torch.float16).to(self.device)
save_video(frames, f'{self.config["output_path"]}/input_fps10.mp4', fps=10)
save_video(frames, f'{self.config["output_path"]}/input_fps20.mp4', fps=20)
save_video(frames, f'{self.config["output_path"]}/input_fps30.mp4', fps=30)
else:
frames = self.frames
# encode to latents
latents = self.encode_imgs(frames, deterministic=True).to(torch.float16).to(self.device)
# get noise
eps = self.get_ddim_eps(latents, range(self.config["n_frames"])).to(torch.float16).to(self.device)
if not read_from_files:
return None, frames, latents, eps
return paths, frames, latents, eps
def get_ddim_eps(self, latent, indices):
read_from_files = self.inverted_latents is None
# read_from_files = True
if read_from_files:
noisest = max([int(x.split('_')[-1].split('.')[0]) for x in glob.glob(os.path.join(self.latents_path, f'noisy_latents_*.pt'))])
print("noisets:", noisest)
print("indecies:", indices)
latents_path = os.path.join(self.latents_path, f'noisy_latents_{noisest}.pt')
noisy_latent = torch.load(latents_path)[indices].to(self.device)
# path = os.path.join('test_latents', f'noisy_latents_{noisest}.pt')
# f_noisy_latent = torch.load(path)[indices].to(self.device)
# print(f_noisy_latent==noisy_latent)
else:
noisest = max([int(key.split("_")[-1]) for key in self.inverted_latents.keys()])
print("noisets:", noisest)
print("indecies:", indices)
noisy_latent = self.inverted_latents[f'noisy_latents_{noisest}'][indices]
alpha_prod_T = self.scheduler.alphas_cumprod[noisest]
mu_T, sigma_T = alpha_prod_T ** 0.5, (1 - alpha_prod_T) ** 0.5
eps = (noisy_latent - mu_T * latent) / sigma_T
return eps
@torch.no_grad()
def denoise_step(self, x, t, indices):
# register the time step and features in pnp injection modules
read_files = self.inverted_latents is None
if read_files:
source_latents = load_source_latents_t(t, self.latents_path)[indices]
else:
source_latents = self.inverted_latents[f'noisy_latents_{t}'][indices]
latent_model_input = torch.cat([source_latents] + ([x] * 2))
if self.sd_version == 'depth':
latent_model_input = torch.cat([latent_model_input, torch.cat([self.depth_maps[indices]] * 3)], dim=1)
register_time(self, t.item())
# compute text embeddings
text_embed_input = torch.cat([self.pnp_guidance_embeds.repeat(len(indices), 1, 1),
torch.repeat_interleave(self.text_embeds, len(indices), dim=0)])
# apply the denoising network
noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embed_input)['sample']
# perform guidance
_, noise_pred_uncond, noise_pred_cond = noise_pred.chunk(3)
noise_pred = noise_pred_uncond + self.config["guidance_scale"] * (noise_pred_cond - noise_pred_uncond)
# compute the denoising step with the reference model
denoised_latent = self.scheduler.step(noise_pred, t, x)['prev_sample']
return denoised_latent
@torch.autocast(dtype=torch.float16, device_type='cuda')
def batched_denoise_step(self, x, t, indices):
batch_size = self.config["batch_size"]
denoised_latents = []
pivotal_idx = torch.randint(batch_size, (len(x)//batch_size,)) + torch.arange(0,len(x),batch_size)
register_pivotal(self, True)
self.denoise_step(x[pivotal_idx], t, indices[pivotal_idx])
register_pivotal(self, False)
for i, b in enumerate(range(0, len(x), batch_size)):
register_batch_idx(self, i)
denoised_latents.append(self.denoise_step(x[b:b + batch_size], t, indices[b:b + batch_size]))
denoised_latents = torch.cat(denoised_latents)
return denoised_latents
def init_method(self, conv_injection_t, qk_injection_t):
self.qk_injection_timesteps = self.scheduler.timesteps[:qk_injection_t] if qk_injection_t >= 0 else []
self.conv_injection_timesteps = self.scheduler.timesteps[:conv_injection_t] if conv_injection_t >= 0 else []
register_extended_attention_pnp(self, self.qk_injection_timesteps)
register_conv_injection(self, self.conv_injection_timesteps)
set_tokenflow(self.unet)
def save_vae_recon(self):
os.makedirs(f'{self.config["output_path"]}/vae_recon', exist_ok=True)
decoded = self.decode_latents(self.latents)
for i in range(len(decoded)):
T.ToPILImage()(decoded[i]).save(f'{self.config["output_path"]}/vae_recon/%05d.png' % i)
save_video(decoded, f'{self.config["output_path"]}/vae_recon_10.mp4', fps=10)
save_video(decoded, f'{self.config["output_path"]}/vae_recon_20.mp4', fps=20)
save_video(decoded, f'{self.config["output_path"]}/vae_recon_30.mp4', fps=30)
def edit_video(self):
save_files = self.inverted_latents is None # if we're in the original non-demo setting
if save_files:
os.makedirs(f'{self.config["output_path"]}/img_ode', exist_ok=True)
self.save_vae_recon()
# self.save_vae_recon()
pnp_f_t = int(self.config["n_timesteps"] * self.config["pnp_f_t"])
pnp_attn_t = int(self.config["n_timesteps"] * self.config["pnp_attn_t"])
self.init_method(conv_injection_t=pnp_f_t, qk_injection_t=pnp_attn_t)
noisy_latents = self.scheduler.add_noise(self.latents, self.eps, self.scheduler.timesteps[0])
edited_frames = self.sample_loop(noisy_latents, torch.arange(self.config["n_frames"]))
if save_files:
save_video(edited_frames, f'{self.config["output_path"]}/tokenflow_PnP_fps_10.mp4')
save_video(edited_frames, f'{self.config["output_path"]}/tokenflow_PnP_fps_20.mp4', fps=20)
save_video(edited_frames, f'{self.config["output_path"]}/tokenflow_PnP_fps_30.mp4', fps=30)
print('Done!')
else:
return edited_frames
def sample_loop(self, x, indices):
save_files = self.inverted_latents is None # if we're in the original non-demo setting
# save_files = True
if save_files:
os.makedirs(f'{self.config["output_path"]}/img_ode', exist_ok=True)
for i, t in enumerate(tqdm(self.scheduler.timesteps, desc="Sampling")):
x = self.batched_denoise_step(x, t, indices)
decoded_latents = self.decode_latents(x)
if save_files:
for i in range(len(decoded_latents)):
T.ToPILImage()(decoded_latents[i]).save(f'{self.config["output_path"]}/img_ode/%05d.png' % i)
return decoded_latents
# def run(config):
# seed_everything(config["seed"])
# print(config)
# editor = TokenFlow(config)
# editor.edit_video()
# if __name__ == '__main__':
# parser = argparse.ArgumentParser()
# parser.add_argument('--config_path', type=str, default='configs/config_pnp.yaml')
# opt = parser.parse_args()
# with open(opt.config_path, "r") as f:
# config = yaml.safe_load(f)
# config["output_path"] = os.path.join(config["output_path"] + f'_pnp_SD_{config["sd_version"]}',
# Path(config["data_path"]).stem,
# config["prompt"][:240],
# f'attn_{config["pnp_attn_t"]}_f_{config["pnp_f_t"]}',
# f'batch_size_{str(config["batch_size"])}',
# str(config["n_timesteps"]),
# )
# os.makedirs(config["output_path"], exist_ok=True)
# print(config["data_path"])
# assert os.path.exists(config["data_path"]), "Data path does not exist"
# with open(os.path.join(config["output_path"], "config.yaml"), "w") as f:
# yaml.dump(config, f)
# run(config)
|