Spaces:
Running
Running
# main.py | |
import os | |
import streamlit as st | |
import anthropic | |
from langchain_community.embeddings import HuggingFaceInferenceAPIEmbeddings | |
from langchain_community.vectorstores import SupabaseVectorStore | |
from langchain_community.llms import HuggingFaceEndpoint | |
from langchain_community.vectorstores import SupabaseVectorStore | |
from langchain.chains import ConversationalRetrievalChain | |
from langchain.memory import ConversationBufferMemory | |
from supabase import Client, create_client | |
from streamlit.logger import get_logger | |
from stats import get_usage, add_usage | |
supabase_url = st.secrets.SUPABASE_URL | |
supabase_key = st.secrets.SUPABASE_KEY | |
openai_api_key = st.secrets.openai_api_key | |
anthropic_api_key = st.secrets.anthropic_api_key | |
hf_api_key = st.secrets.hf_api_key | |
username = st.secrets.username | |
supabase: Client = create_client(supabase_url, supabase_key) | |
logger = get_logger(__name__) | |
embeddings = HuggingFaceInferenceAPIEmbeddings( | |
api_key=hf_api_key, | |
model_name="BAAI/bge-large-en-v1.5" | |
) | |
if 'chat_history' not in st.session_state: | |
st.session_state['chat_history'] = [] | |
vector_store = SupabaseVectorStore(supabase, embeddings, query_name='match_documents', table_name="documents") | |
memory = ConversationBufferMemory(memory_key="chat_history", input_key='question', output_key='answer', return_messages=True) | |
model = "mistralai/Mixtral-8x7B-Instruct-v0.1" | |
temperature = 0.1 | |
max_tokens = 500 | |
stats = str(get_usage(supabase)) | |
def response_generator(query): | |
qa = None | |
add_usage(supabase, "chat", "prompt" + query, {"model": model, "temperature": temperature}) | |
logger.info('Using HF model %s', model) | |
# print(st.session_state['max_tokens']) | |
endpoint_url = ("https://api-inference.huggingface.co/models/"+ model) | |
model_kwargs = {"temperature" : temperature, | |
"max_new_tokens" : max_tokens, | |
# "repetition_penalty" : 1.1, | |
"return_full_text" : False} | |
hf = HuggingFaceEndpoint( | |
endpoint_url=endpoint_url, | |
task="text-generation", | |
huggingfacehub_api_token=hf_api_key, | |
model_kwargs=model_kwargs | |
) | |
qa = ConversationalRetrievalChain.from_llm(hf, retriever=vector_store.as_retriever(search_kwargs={"score_threshold": 0.6, "k": 4,"filter": {"user": username}}), memory=memory, verbose=True, return_source_documents=True) | |
# Generate model's response | |
model_response = qa({"question": query}) | |
logger.info('Result: %s', model_response["answer"]) | |
sources = model_response["source_documents"] | |
logger.info('Sources: %s', model_response["source_documents"]) | |
if len(sources) > 0: | |
response = model_response["answer"] | |
else: | |
response = "I am sorry, I do not have enough information to provide an answer. If there is a public source of data that you would like to add, please email copilot@securade.ai." | |
return response | |
# Set the theme | |
st.set_page_config( | |
page_title="Securade.ai - Safety Copilot", | |
page_icon="https://securade.ai/favicon.ico", | |
layout="centered", | |
initial_sidebar_state="collapsed", | |
menu_items={ | |
"About": "# Securade.ai Safety Copilot v0.1\n [https://securade.ai](https://securade.ai)", | |
"Get Help" : "https://securade.ai", | |
"Report a Bug": "mailto:hello@securade.ai" | |
} | |
) | |
st.title("👷♂️ Safety Copilot 🦺") | |
st.markdown("Chat with your personal safety assistant about any health & safety related queries.") | |
# st.markdown("Up-to-date with latest OSH regulations for Singapore, Indonesia, Malaysia & other parts of Asia.") | |
st.markdown("_"+ stats + " queries answered!_") | |
if 'chat_history' not in st.session_state: | |
st.session_state['chat_history'] = [] | |
# Display chat messages from history on app rerun | |
for message in st.session_state.chat_history: | |
with st.chat_message(message["role"]): | |
st.markdown(message["content"]) | |
# Accept user input | |
if prompt := st.chat_input("Ask a question"): | |
# print(prompt) | |
# Add user message to chat history | |
st.session_state.chat_history.append({"role": "user", "content": prompt}) | |
# Display user message in chat message container | |
with st.chat_message("user"): | |
st.markdown(prompt) | |
with st.spinner('Safety briefing in progress...'): | |
response = response_generator(prompt) | |
# Display assistant response in chat message container | |
with st.chat_message("assistant"): | |
st.markdown(response) | |
# Add assistant response to chat history | |
# print(response) | |
st.session_state.chat_history.append({"role": "assistant", "content": response}) | |
# query = st.text_area("## Ask a question (" + stats + " queries answered so far)", max_chars=500) | |
# columns = st.columns(2) | |
# with columns[0]: | |
# button = st.button("Ask") | |
# with columns[1]: | |
# clear_history = st.button("Clear History", type='secondary') | |
# st.markdown("---\n\n") | |
# if clear_history: | |
# # Clear memory in Langchain | |
# memory.clear() | |
# st.session_state['chat_history'] = [] | |
# st.experimental_rerun() |