# main.py
import os
import tempfile
import streamlit as st
from files import file_uploader, url_uploader
from question import chat_with_doc
from brain import brain
from langchain.embeddings import HuggingFaceInferenceAPIEmbeddings
from langchain.vectorstores import SupabaseVectorStore
from supabase import Client, create_client
from explorer import view_document
from stats import get_usage_today
supabase_url = st.secrets.supabase_url
supabase_key = st.secrets.supabase_service_key
openai_api_key = st.secrets.openai_api_key
anthropic_api_key = st.secrets.anthropic_api_key
hf_api_key = st.secrets.hf_api_key
supabase: Client = create_client(supabase_url, supabase_key)
self_hosted = st.secrets.self_hosted
# embeddings = OpenAIEmbeddings(openai_api_key=openai_api_key)
embeddings = HuggingFaceInferenceAPIEmbeddings(
api_key=hf_api_key,
model_name="BAAI/bge-large-en-v1.5"
)
vector_store = SupabaseVectorStore(supabase, embeddings, query_name='match_documents', table_name="documents")
models = ["llama-2"]
if openai_api_key:
models += ["gpt-3.5-turbo", "gpt-4"]
if anthropic_api_key:
models += ["claude-v1", "claude-v1.3",
"claude-instant-v1-100k", "claude-instant-v1.1-100k"]
# Set the theme
st.set_page_config(
page_title="meraKB",
layout="wide",
initial_sidebar_state="expanded",
)
st.title("🧠meraKB - Your digital brain 🧠")
st.markdown("Store your knowledge in a vector store and chat with it.")
if self_hosted == "false":
st.markdown('**📢 Note: In the public demo, access to functionality is restricted. You can only use the GPT-3.5-turbo model and upload files up to 1Mb. To use more models and upload larger files, consider self-hosting meraKB.**')
st.markdown("---\n\n")
st.session_state["overused"] = False
if self_hosted == "false":
usage = get_usage_today(supabase)
if usage > st.secrets.usage_limit:
st.markdown(
f"You have used {usage} tokens today, which is more than your daily limit of {st.secrets.usage_limit} tokens. Please come back later or consider self-hosting.", unsafe_allow_html=True)
st.session_state["overused"] = True
else:
st.markdown(f"Usage today: {usage} tokens out of {st.secrets.usage_limit}", unsafe_allow_html=True)
st.write("---")
# Initialize session state variables
if 'model' not in st.session_state:
st.session_state['model'] = "llama-2"
if 'temperature' not in st.session_state:
st.session_state['temperature'] = 0.1
if 'chunk_size' not in st.session_state:
st.session_state['chunk_size'] = 500
if 'chunk_overlap' not in st.session_state:
st.session_state['chunk_overlap'] = 0
if 'max_tokens' not in st.session_state:
st.session_state['max_tokens'] = 500
# Create a radio button for user to choose between adding knowledge or asking a question
user_choice = st.radio(
"Choose an action", ('Add Knowledge', 'Chat with your Brain', 'Forget', "Explore"))
st.markdown("---\n\n")
if user_choice == 'Add Knowledge':
# Display chunk size and overlap selection only when adding knowledge
st.sidebar.title("Configuration")
st.sidebar.markdown(
"Choose your chunk size and overlap for adding knowledge.")
st.session_state['chunk_size'] = st.sidebar.slider(
"Select Chunk Size", 100, 1000, st.session_state['chunk_size'], 50)
st.session_state['chunk_overlap'] = st.sidebar.slider(
"Select Chunk Overlap", 0, 100, st.session_state['chunk_overlap'], 10)
# Create two columns for the file uploader and URL uploader
col1, col2 = st.columns(2)
with col1:
file_uploader(supabase, vector_store)
with col2:
url_uploader(supabase, vector_store)
elif user_choice == 'Chat with your Brain':
# Display model and temperature selection only when asking questions
st.sidebar.title("Configuration")
st.sidebar.markdown(
"Choose your model and temperature for asking questions.")
if self_hosted != "false":
st.session_state['model'] = st.sidebar.selectbox(
"Select Model", models, index=(models).index(st.session_state['model']))
else:
st.sidebar.write("**Model**: gpt-3.5-turbo")
st.sidebar.write("**Self Host to unlock more models such as claude-v1 and GPT4**")
st.session_state['model'] = "gpt-3.5-turbo"
st.session_state['temperature'] = st.sidebar.slider(
"Select Temperature", 0.1, 1.0, st.session_state['temperature'], 0.1)
if st.secrets.self_hosted != "false":
st.session_state['max_tokens'] = st.sidebar.slider(
"Select Max Tokens", 500, 4000, st.session_state['max_tokens'], 500)
else:
st.session_state['max_tokens'] = 500
chat_with_doc(st.session_state['model'], vector_store, stats_db=supabase)
elif user_choice == 'Forget':
st.sidebar.title("Configuration")
brain(supabase)
elif user_choice == 'Explore':
st.sidebar.title("Configuration")
view_document(supabase)
st.markdown("---\n\n")