loubnabnl HF staff commited on
Commit
e7c6c43
·
1 Parent(s): 2738707

update import

Browse files
Files changed (1) hide show
  1. utils.py +188 -0
utils.py ADDED
@@ -0,0 +1,188 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import itertools
2
+ import numpy as np
3
+ from typing import Dict
4
+ from datasets import load_dataset
5
+ import testing_util as test_util
6
+
7
+
8
+ DATASET = "codeparrot/apps"
9
+
10
+
11
+ def evaluate_generations(generations: list, level: str = "all", debug: bool = False):
12
+ """We take the list of code generations and try to compile them
13
+ and the run their corresponding unit tests which are retrieved from the APPS dataset.
14
+
15
+ Args:
16
+ generations: list of code generations (same order as samples in APPS dataset)
17
+ level: difficulty level used in the generation, can be "all", "introductory", "interview" or "competition"
18
+
19
+ Returns:
20
+ results: dictionary of results, key is the problem index, value is a list of results for each generation
21
+ [-2] = compile error, [-1] = runtime error [False] = failed test case [True] = passed test case
22
+ """
23
+
24
+ # generations are code generations in the same order of the dataset
25
+ apps_eval = load_dataset(DATASET, split="test", difficulties=[level])
26
+ results = {}
27
+ for index in range(len(generations)):
28
+ # code generations for problem (index)
29
+ problem_generations = generations[index]
30
+ # get corresponding samples from APPS dataset
31
+ sample = apps_eval[index]
32
+ res = []
33
+ # loop over the generations
34
+ for o_idx, o in enumerate(problem_generations):
35
+ curr_res = [-2]
36
+ try:
37
+ curr_res = test_util.run_test(sample, test=o, debug=debug)
38
+ #if debug:
39
+ print(f"\nSuccessful compilation of task {index}!")
40
+ fixed = []
41
+ for e in curr_res:
42
+ if isinstance(e, np.ndarray):
43
+ e = e.item(0)
44
+ if isinstance(e, np.bool_):
45
+ e = bool(e)
46
+ fixed.append(e)
47
+ curr_res = fixed
48
+ if not np.all(curr_res):
49
+ #if debug:
50
+ print(f"Results were not True for all test cases")
51
+ except Exception as e:
52
+ if debug:
53
+ print(f"Compilation failed, test framework exception = {repr(e)}{e}\n")
54
+ break
55
+ finally:
56
+ assert isinstance(curr_res, list)
57
+ res.append(curr_res)
58
+ results[index] = res
59
+ return results
60
+
61
+
62
+ def estimate_pass_at_k(num_samples, num_correct, k):
63
+ """Estimates pass@k of each problem and returns them in an array."""
64
+
65
+ def estimator(n: int, c: int, k: int) -> float:
66
+ """Calculates 1 - comb(n - c, k) / comb(n, k)."""
67
+ if n - c < k:
68
+ return 1.0
69
+ return 1.0 - np.prod(1.0 - k / np.arange(n - c + 1, n + 1))
70
+
71
+ if isinstance(num_samples, int):
72
+ num_samples_it = itertools.repeat(num_samples, len(num_correct))
73
+ else:
74
+ assert len(num_samples) == len(num_correct)
75
+ num_samples_it = iter(num_samples)
76
+
77
+ return np.array([estimator(int(n), int(c), k) for n, c in zip(num_samples_it, num_correct)])
78
+
79
+
80
+ def get_results(results: Dict[int, list], count_errors: bool = False, k_list: list = [1, 10, 100]):
81
+ """
82
+ Given the results evaluated against the testcases we output some statistics.
83
+ For single generations:
84
+ >>> example_results = {0: [[-2]], 1: [[False,False]], 2: [[True,True]], 3: [[False,True,False,True]], 4: [[-1,-1]]}
85
+ >>> get_results(example_results, count_errors=True)
86
+ Computing accuracy metrics...
87
+ number of compile errors = 1 avg = 0.2
88
+ number of runtime errors = 1 avg = 0.2
89
+ number of problems evaluated = 5
90
+ Average Accuracy : 0.3
91
+ Strict Accuracy : 0.2
92
+ {'avg_accuracy': 0.3, 'strict_accuracy': 0.2, 'pass_at_k': None}
93
+
94
+ For multiple generations:
95
+ >>> example_results = {0: [[-2], [True, True, True]], 1: [[-1,-1, -1], [True, False, True]]}
96
+ >>> get_results(example_results, k_list=[1, 2])
97
+ Computing pass@k metric for multiple generations...
98
+ {'pass@1': 0.25, 'pass@2': 0.5}
99
+ {'avg_accuracy': None, 'strict_accuracy': None, 'pass_at_k': {'pass@1': 0.25, 'pass@2': 0.5}}
100
+ """
101
+
102
+ metrics = {"avg_accuracy": None, "strict_accuracy": None, "pass_at_k": None}
103
+
104
+ if len(results[0]) == 1:
105
+ # for single generations we compute average accuracy and stric accuracy: original APPS metrics
106
+ print("Computing accuracy metrics...")
107
+ res = []
108
+ per_prob_res = []
109
+ all_correct = []
110
+ for index in results:
111
+ problem_results = np.asarray(results[index])
112
+ res.extend(problem_results)
113
+ per_prob_res.append(np.mean(problem_results > 0))
114
+ all_correct.append(np.all(problem_results > 0))
115
+ # we count campilation and runtime errors once per pronlem
116
+ compile_errors = len([e for e in res if -2 in e])
117
+ runtime_errors = len([e for e in res if -1 in e])
118
+ total_testcases = len(res)
119
+ if count_errors:
120
+ print(f"number of compile errors = {compile_errors} avg = {compile_errors / total_testcases}")
121
+ print(f"number of runtime errors = {runtime_errors} avg = {runtime_errors / total_testcases}")
122
+ print(f"number of problems evaluated = {total_testcases}")
123
+
124
+ print(f"Average Accuracy : {np.mean(per_prob_res)}")
125
+ print(f"Strict Accuracy : {np.mean(all_correct)}")
126
+ metrics["avg_accuracy"] = np.mean(per_prob_res)
127
+ metrics["strict_accuracy"] = np.mean(all_correct)
128
+
129
+ else:
130
+ # for multiple generations we use pass@k metric used in the HumanEval benchmark
131
+ # we use strict accuracy, a generation is valid if it has to pass all the tests
132
+ print("Computing pass@k metric for multiple generations...")
133
+ # total is list with nb generations per task (task=index)
134
+ # correct is number of generations that passed all tests per task
135
+ total = []
136
+ correct = []
137
+ for index in results:
138
+ all_correct = []
139
+ for generation in results[index]:
140
+ gen = np.array(generation)
141
+ all_correct.append(np.all(gen>0))
142
+ total.append(len(all_correct))
143
+ correct.append(sum(all_correct))
144
+ total = np.array(total)
145
+ correct = np.array(correct)
146
+ ks = k_list
147
+ pass_at_k = {f"pass@{k}": estimate_pass_at_k(total, correct, k).mean() for k in ks if (total >= k).all()}
148
+ print(pass_at_k)
149
+ metrics["pass_at_k"] = pass_at_k
150
+ return metrics
151
+
152
+ def compute_metrics(generations, level="all", k_list=[1, 10, 100], count_errors=True, debug=False):
153
+ """Return metrics for the given generations.
154
+ Args:
155
+ generations: list of code generations for each problem (each generation is a list of generations)
156
+ k_list: list of k values to compute pass@k when using multiple generations
157
+ count_errors: whether to count compilation and runtime errors when using single generations
158
+ level: difficulty level in APPS dataset that was used for the given generations (from: "all", "introductory", "interview", "competition")
159
+ Returns:
160
+ metrics: dict of metrics
161
+
162
+ Examples:
163
+
164
+ >>> import json
165
+ >>> # lists of solutions to the two first APPS problems (note not all solutions pass all tests)
166
+ >>> solution_sample1 = json.load(open("test_examples/solutions_problem_1.json", "r"))
167
+ >>> solution_sample2 = json.load(open("test_examples/solutions_problem_2.json", "r"))
168
+ >>> single_solutions = [solution_sample1[:1], solution_sample2[:1]]
169
+ >>> compute_metrics(single_solutions, level="all")
170
+ Computing accuracy metrics...
171
+ number of compile errors = 0 avg = 0.0
172
+ number of runtime errors = 0 avg = 0.0
173
+ number of problems evaluated = 2
174
+ Average Accuracy : 1.0
175
+ Strict Accuracy : 1.0
176
+ {'avg_accuracy': 1.0, 'strict_accuracy': 1.0, 'pass_at_k': None}
177
+ >>> multiple_solutions = [solution_sample1[:3], solution_sample2[:3]]
178
+ >>> compute_metrics(multiple_solutions, level="all", k_list=[1, 2, 3])
179
+ Computing pass@k metric for multiple generations...
180
+ {'pass@1': 1.0, 'pass@2': 1.0, 'pass@3': 1.0}
181
+ {'avg_accuracy': None, 'strict_accuracy': None, 'pass_at_k': {'pass@1': 1.0, 'pass@2': 1.0, 'pass@3': 1.0}}
182
+ """
183
+ results = evaluate_generations(generations, level=level, debug=debug)
184
+ metrics = get_results(results, count_errors=count_errors, k_list=k_list)
185
+ return metrics
186
+
187
+ #import doctest
188
+ #doctest.testmod()