import gradio as gr from transformers import AutoTokenizer, AutoModelForCausalLM, set_seed, pipeline title = "Code Generator" description = "This is a space to convert english text to Python code using with [codeparrot-small-text-to-code](https://huggingface.co/codeparrot/codeparrot-small-text-to-code),\ a code generation model for Python finetuned on [github-jupyter-text](https://huggingface.co/datasets/codeparrot/github-jupyter-text) a dataset of doctrings\ and their Python code extracted from Jupyter notebooks." example = [ ["Utility function to compute the accuracy of predictions using metric from sklearn", 65, 0.6, 42], ["Let's implement a function that computes the size of a file called filepath", 60, 0.6, 42], ["Let's implement bubble sort in a helper function:", 87, 0.6, 42], ] # change model to the finetuned one tokenizer = AutoTokenizer.from_pretrained("codeparrot/codeparrot-small-text-to-code") model = AutoModelForCausalLM.from_pretrained("codeparrot/codeparrot-small-text-to-code") def make_doctring(gen_prompt): return "\"\"\"\n" + gen_prompt + "\n\"\"\"\n\n" def code_generation(gen_prompt, max_tokens, temperature=0.6, seed=42): set_seed(seed) pipe = pipeline("text-generation", model=model, tokenizer=tokenizer) prompt = make_doctring(gen_prompt) generated_text = pipe(prompt, do_sample=True, top_p=0.95, temperature=temperature, max_new_tokens=max_tokens)[0]['generated_text'] return generated_text iface = gr.Interface( fn=code_generation, inputs=[ gr.Code(lines=10, language="python", label="English instructions"), gr.inputs.Slider( minimum=8, maximum=256, step=1, default=8, label="Number of tokens to generate", ), gr.inputs.Slider( minimum=0, maximum=2.5, step=0.1, default=0.6, label="Temperature", ), gr.inputs.Slider( minimum=0, maximum=1000, step=1, default=42, label="Random seed to use for the generation" ) ], outputs=gr.Code(label="Predicted Python code", language="python", lines=10), examples=example, layout="horizontal", theme="peach", description=description, title=title ) iface.launch()