File size: 4,544 Bytes
870b873
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
907a182
 
870b873
907a182
 
 
 
 
 
870b873
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
907a182
870b873
 
 
 
907a182
870b873
 
 
 
 
 
 
 
 
 
 
 
 
 
 
907a182
 
870b873
907a182
 
 
870b873
907a182
 
870b873
907a182
 
870b873
907a182
 
870b873
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
import os
import streamlit as st
from dotenv import load_dotenv
from PyPDF2 import PdfReader
from langchain.text_splitter import CharacterTextSplitter
from langchain_openai import OpenAIEmbeddings
from langchain_community.embeddings import HuggingFaceInstructEmbeddings
from langchain_community.vectorstores import FAISS
from langchain_openai import ChatOpenAI
from langchain_community.llms import HuggingFaceHub
from langchain.memory import ConversationBufferMemory
from langchain.chains import ConversationalRetrievalChain
from langchain_community.document_loaders import DirectoryLoader
from htmlTemplates import css, bot_template, user_template
from langchain.globals import set_verbose
set_verbose(False)  # Updated function call


def read_files_from_directory(directory):
    files = []
    for filename in os.listdir(directory):
        if filename.endswith(".pdf"):
            files.append(os.path.join(directory, filename))
    return files

def get_pdf_text(pdf_docs):
    text = ""
    for pdf in pdf_docs:
        pdf_reader = PdfReader(pdf)
        for page in pdf_reader.pages:
            text += page.extract_text()
    return text

def get_text_chunks(raw_text):
    text_splitter = CharacterTextSplitter(
        separator="\n",
        chunk_size=1000,
        chunk_overlap=200,
        length_function=len
        )
    chunks = text_splitter.split_text(raw_text)
    return chunks

def get_vector_store(text_chunks):
    # embeddings = HuggingFaceInstructEmbeddings(model_name="hkunlp/instructor-xl")
    embeddings = OpenAIEmbeddings(openai_api_key=os.getenv('OPENAI_API_KEY'))
    vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings)
    return vectorstore

def get_conversation_chain(vectorstore):
    if not os.getenv('OPENAI_API_KEY') and not os.getenv('LAW_GPT_MODEL_URL'):
        raise ValueError("Please provide either OPENAI_API_KEY or LAW_GPT_MODEL_URL in the .env file")

    # Use LAW GPT model if LAW_GPT_MODEL_URL is provided  
    if os.getenv('LAW_GPT_MODEL_URL'):
        llm = HuggingFaceHub(repo_id=os.getenv('LAW_GPT_MODEL_URL'))
    else:
        llm = ChatOpenAI(openai_api_key=os.getenv('OPENAI_API_KEY'))
        
    memory = ConversationBufferMemory(memory_key='chat_history', return_messages=True)
    conversation_chain = ConversationalRetrievalChain.from_llm(
        llm=llm,
        retriever=vectorstore.as_retriever(),
        memory=memory
    )
    return conversation_chain

# get handler user input method
def handle_user_input(user_question):
    if st.session_state.conversation is not None:

        response = st.session_state.conversation({'question': user_question})
        st.session_state.chat_history = response['chat_history']

        for i, message in enumerate(st.session_state.chat_history):
            if i % 2 == 0:
                st.write(user_template.replace(
                    "{{MSG}}", message.content), unsafe_allow_html=True)
            else:
                st.write(bot_template.replace(
                    "{{MSG}}", message.content), unsafe_allow_html=True)
    else:
        st.write("No data is loaded for RAG. Please upload a PDFs files to the data/ directory.")

def main():
    load_dotenv()

    st.set_page_config(page_title="EULawGPT - LLM model that can understand and reason about EU public domain data", page_icon=":books:")
    st.write(css, unsafe_allow_html=True)
    
    #load knowledge data PDF
    files = read_files_from_directory('./data')
    raw_knowledge_text = get_pdf_text(files)
    raw_knowledge_chunks = get_text_chunks(raw_knowledge_text)
    vectorstore_knowledge = get_vector_store(raw_knowledge_chunks)

    st.session_state.conversation = get_conversation_chain(vectorstore_knowledge)

    if "conversation" not in st.session_state:
        st.session_state.conversation = None
    if "chat_history" not in st.session_state:
        st.session_state.chat_history = None

    st.title("EU Law GPT")
    st.write("EU Law GPT is a LLM model that can understand and reason about EU public domain data")

    st.subheader('Popular questions:')
    if st.button("What is happening in Equador?"):
        handle_user_input("What is happening in Equador?")

    if st.button("What EU will do with Ecuador crisis?"):
        handle_user_input("What EU will do with Ecuador crisis?")

    st.subheader('Ask anything:')
    user_question = st.text_input("Ask a question about EU Law and Parlament work")

    if user_question:
        handle_user_input(user_question)

if __name__ == '__main__':
    main()