Spaces:
Runtime error
Runtime error
Delete app.py
Browse files
app.py
DELETED
@@ -1,473 +0,0 @@
|
|
1 |
-
Hugging Face's logo
|
2 |
-
Hugging Face
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
Spaces:
|
7 |
-
|
8 |
-
awacke1
|
9 |
-
/
|
10 |
-
ChatGPT-Memory-Chat-Story-Generator
|
11 |
-
|
12 |
-
like
|
13 |
-
11
|
14 |
-
App
|
15 |
-
|
16 |
-
Files
|
17 |
-
Community
|
18 |
-
ChatGPT-Memory-Chat-Story-Generator
|
19 |
-
/
|
20 |
-
app.py
|
21 |
-
awacke1's picture
|
22 |
-
awacke1
|
23 |
-
Update app.py
|
24 |
-
03c8b68
|
25 |
-
raw
|
26 |
-
history
|
27 |
-
blame
|
28 |
-
contribute
|
29 |
-
delete
|
30 |
-
No virus
|
31 |
-
17.6 kB
|
32 |
-
import streamlit as st
|
33 |
-
import openai
|
34 |
-
import os
|
35 |
-
import base64
|
36 |
-
import glob
|
37 |
-
import json
|
38 |
-
import mistune
|
39 |
-
import pytz
|
40 |
-
import math
|
41 |
-
import requests
|
42 |
-
import time
|
43 |
-
import re
|
44 |
-
import textract
|
45 |
-
|
46 |
-
from datetime import datetime
|
47 |
-
from openai import ChatCompletion
|
48 |
-
from xml.etree import ElementTree as ET
|
49 |
-
from bs4 import BeautifulSoup
|
50 |
-
from collections import deque
|
51 |
-
from audio_recorder_streamlit import audio_recorder
|
52 |
-
|
53 |
-
from dotenv import load_dotenv
|
54 |
-
from PyPDF2 import PdfReader
|
55 |
-
from langchain.text_splitter import CharacterTextSplitter
|
56 |
-
from langchain.embeddings import OpenAIEmbeddings
|
57 |
-
from langchain.vectorstores import FAISS
|
58 |
-
from langchain.chat_models import ChatOpenAI
|
59 |
-
from langchain.memory import ConversationBufferMemory
|
60 |
-
from langchain.chains import ConversationalRetrievalChain
|
61 |
-
from templates import css, bot_template, user_template
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
def generate_filename(prompt, file_type):
|
66 |
-
central = pytz.timezone('US/Central')
|
67 |
-
safe_date_time = datetime.now(central).strftime("%m%d_%H%M") # Date and time DD-HHMM
|
68 |
-
safe_prompt = "".join(x for x in prompt if x.isalnum())[:90] # Limit file name size and trim whitespace
|
69 |
-
return f"{safe_date_time}_{safe_prompt}.{file_type}" # Return a safe file name
|
70 |
-
|
71 |
-
|
72 |
-
def transcribe_audio(openai_key, file_path, model):
|
73 |
-
OPENAI_API_URL = "https://api.openai.com/v1/audio/transcriptions"
|
74 |
-
headers = {
|
75 |
-
"Authorization": f"Bearer {openai_key}",
|
76 |
-
}
|
77 |
-
with open(file_path, 'rb') as f:
|
78 |
-
data = {'file': f}
|
79 |
-
response = requests.post(OPENAI_API_URL, headers=headers, files=data, data={'model': model})
|
80 |
-
if response.status_code == 200:
|
81 |
-
st.write(response.json())
|
82 |
-
chatResponse = chat_with_model(response.json().get('text'), '') # *************************************
|
83 |
-
transcript = response.json().get('text')
|
84 |
-
#st.write('Responses:')
|
85 |
-
#st.write(chatResponse)
|
86 |
-
filename = generate_filename(transcript, 'txt')
|
87 |
-
create_file(filename, transcript, chatResponse)
|
88 |
-
return transcript
|
89 |
-
else:
|
90 |
-
st.write(response.json())
|
91 |
-
st.error("Error in API call.")
|
92 |
-
return None
|
93 |
-
|
94 |
-
def save_and_play_audio(audio_recorder):
|
95 |
-
audio_bytes = audio_recorder()
|
96 |
-
if audio_bytes:
|
97 |
-
filename = generate_filename("Recording", "wav")
|
98 |
-
with open(filename, 'wb') as f:
|
99 |
-
f.write(audio_bytes)
|
100 |
-
st.audio(audio_bytes, format="audio/wav")
|
101 |
-
return filename
|
102 |
-
return None
|
103 |
-
|
104 |
-
def create_file(filename, prompt, response):
|
105 |
-
if filename.endswith(".txt"):
|
106 |
-
with open(filename, 'w') as file:
|
107 |
-
file.write(f"{prompt}\n{response}")
|
108 |
-
elif filename.endswith(".htm"):
|
109 |
-
with open(filename, 'w') as file:
|
110 |
-
file.write(f"{prompt} {response}")
|
111 |
-
elif filename.endswith(".md"):
|
112 |
-
with open(filename, 'w') as file:
|
113 |
-
file.write(f"{prompt}\n\n{response}")
|
114 |
-
|
115 |
-
def truncate_document(document, length):
|
116 |
-
return document[:length]
|
117 |
-
def divide_document(document, max_length):
|
118 |
-
return [document[i:i+max_length] for i in range(0, len(document), max_length)]
|
119 |
-
|
120 |
-
def get_table_download_link(file_path):
|
121 |
-
with open(file_path, 'r') as file:
|
122 |
-
try:
|
123 |
-
data = file.read()
|
124 |
-
except:
|
125 |
-
st.write('')
|
126 |
-
return file_path
|
127 |
-
b64 = base64.b64encode(data.encode()).decode()
|
128 |
-
file_name = os.path.basename(file_path)
|
129 |
-
ext = os.path.splitext(file_name)[1] # get the file extension
|
130 |
-
if ext == '.txt':
|
131 |
-
mime_type = 'text/plain'
|
132 |
-
elif ext == '.py':
|
133 |
-
mime_type = 'text/plain'
|
134 |
-
elif ext == '.xlsx':
|
135 |
-
mime_type = 'text/plain'
|
136 |
-
elif ext == '.csv':
|
137 |
-
mime_type = 'text/plain'
|
138 |
-
elif ext == '.htm':
|
139 |
-
mime_type = 'text/html'
|
140 |
-
elif ext == '.md':
|
141 |
-
mime_type = 'text/markdown'
|
142 |
-
else:
|
143 |
-
mime_type = 'application/octet-stream' # general binary data type
|
144 |
-
href = f'<a href="data:{mime_type};base64,{b64}" target="_blank" download="{file_name}">{file_name}</a>'
|
145 |
-
return href
|
146 |
-
|
147 |
-
def CompressXML(xml_text):
|
148 |
-
root = ET.fromstring(xml_text)
|
149 |
-
for elem in list(root.iter()):
|
150 |
-
if isinstance(elem.tag, str) and 'Comment' in elem.tag:
|
151 |
-
elem.parent.remove(elem)
|
152 |
-
return ET.tostring(root, encoding='unicode', method="xml")
|
153 |
-
|
154 |
-
def read_file_content(file,max_length):
|
155 |
-
if file.type == "application/json":
|
156 |
-
content = json.load(file)
|
157 |
-
return str(content)
|
158 |
-
elif file.type == "text/html" or file.type == "text/htm":
|
159 |
-
content = BeautifulSoup(file, "html.parser")
|
160 |
-
return content.text
|
161 |
-
elif file.type == "application/xml" or file.type == "text/xml":
|
162 |
-
tree = ET.parse(file)
|
163 |
-
root = tree.getroot()
|
164 |
-
xml = CompressXML(ET.tostring(root, encoding='unicode'))
|
165 |
-
return xml
|
166 |
-
elif file.type == "text/markdown" or file.type == "text/md":
|
167 |
-
md = mistune.create_markdown()
|
168 |
-
content = md(file.read().decode())
|
169 |
-
return content
|
170 |
-
elif file.type == "text/plain":
|
171 |
-
return file.getvalue().decode()
|
172 |
-
else:
|
173 |
-
return ""
|
174 |
-
|
175 |
-
def chat_with_model(prompt, document_section, model_choice='gpt-3.5-turbo'):
|
176 |
-
model = model_choice
|
177 |
-
conversation = [{'role': 'system', 'content': 'You are a helpful assistant.'}]
|
178 |
-
conversation.append({'role': 'user', 'content': prompt})
|
179 |
-
if len(document_section)>0:
|
180 |
-
conversation.append({'role': 'assistant', 'content': document_section})
|
181 |
-
|
182 |
-
start_time = time.time()
|
183 |
-
report = []
|
184 |
-
res_box = st.empty()
|
185 |
-
collected_chunks = []
|
186 |
-
collected_messages = []
|
187 |
-
|
188 |
-
for chunk in openai.ChatCompletion.create(
|
189 |
-
model='gpt-3.5-turbo',
|
190 |
-
messages=conversation,
|
191 |
-
temperature=0.5,
|
192 |
-
stream=True
|
193 |
-
):
|
194 |
-
|
195 |
-
collected_chunks.append(chunk) # save the event response
|
196 |
-
chunk_message = chunk['choices'][0]['delta'] # extract the message
|
197 |
-
collected_messages.append(chunk_message) # save the message
|
198 |
-
|
199 |
-
content=chunk["choices"][0].get("delta",{}).get("content")
|
200 |
-
|
201 |
-
try:
|
202 |
-
report.append(content)
|
203 |
-
if len(content) > 0:
|
204 |
-
result = "".join(report).strip()
|
205 |
-
#result = result.replace("\n", "")
|
206 |
-
res_box.markdown(f'*{result}*')
|
207 |
-
except:
|
208 |
-
st.write(' ')
|
209 |
-
|
210 |
-
full_reply_content = ''.join([m.get('content', '') for m in collected_messages])
|
211 |
-
st.write("Elapsed time:")
|
212 |
-
st.write(time.time() - start_time)
|
213 |
-
return full_reply_content
|
214 |
-
|
215 |
-
def chat_with_file_contents(prompt, file_content, model_choice='gpt-3.5-turbo'):
|
216 |
-
conversation = [{'role': 'system', 'content': 'You are a helpful assistant.'}]
|
217 |
-
conversation.append({'role': 'user', 'content': prompt})
|
218 |
-
if len(file_content)>0:
|
219 |
-
conversation.append({'role': 'assistant', 'content': file_content})
|
220 |
-
response = openai.ChatCompletion.create(model=model_choice, messages=conversation)
|
221 |
-
return response['choices'][0]['message']['content']
|
222 |
-
|
223 |
-
def extract_mime_type(file):
|
224 |
-
# Check if the input is a string
|
225 |
-
if isinstance(file, str):
|
226 |
-
pattern = r"type='(.*?)'"
|
227 |
-
match = re.search(pattern, file)
|
228 |
-
if match:
|
229 |
-
return match.group(1)
|
230 |
-
else:
|
231 |
-
raise ValueError(f"Unable to extract MIME type from {file}")
|
232 |
-
# If it's not a string, assume it's a streamlit.UploadedFile object
|
233 |
-
elif isinstance(file, streamlit.UploadedFile):
|
234 |
-
return file.type
|
235 |
-
else:
|
236 |
-
raise TypeError("Input should be a string or a streamlit.UploadedFile object")
|
237 |
-
|
238 |
-
from io import BytesIO
|
239 |
-
import re
|
240 |
-
|
241 |
-
def extract_file_extension(file):
|
242 |
-
# get the file name directly from the UploadedFile object
|
243 |
-
file_name = file.name
|
244 |
-
pattern = r".*?\.(.*?)$"
|
245 |
-
match = re.search(pattern, file_name)
|
246 |
-
if match:
|
247 |
-
return match.group(1)
|
248 |
-
else:
|
249 |
-
raise ValueError(f"Unable to extract file extension from {file_name}")
|
250 |
-
|
251 |
-
def pdf2txt(docs):
|
252 |
-
text = ""
|
253 |
-
for file in docs:
|
254 |
-
file_extension = extract_file_extension(file)
|
255 |
-
# print the file extension
|
256 |
-
st.write(f"File type extension: {file_extension}")
|
257 |
-
|
258 |
-
# read the file according to its extension
|
259 |
-
try:
|
260 |
-
if file_extension.lower() in ['py', 'txt', 'html', 'htm', 'xml', 'json']:
|
261 |
-
text += file.getvalue().decode('utf-8')
|
262 |
-
elif file_extension.lower() == 'pdf':
|
263 |
-
from PyPDF2 import PdfReader
|
264 |
-
pdf = PdfReader(BytesIO(file.getvalue()))
|
265 |
-
for page in range(len(pdf.pages)):
|
266 |
-
text += pdf.pages[page].extract_text() # new PyPDF2 syntax
|
267 |
-
except Exception as e:
|
268 |
-
st.write(f"Error processing file {file.name}: {e}")
|
269 |
-
|
270 |
-
return text
|
271 |
-
|
272 |
-
def pdf2txt_old(pdf_docs):
|
273 |
-
st.write(pdf_docs)
|
274 |
-
for file in pdf_docs:
|
275 |
-
mime_type = extract_mime_type(file)
|
276 |
-
st.write(f"MIME type of file: {mime_type}")
|
277 |
-
|
278 |
-
text = ""
|
279 |
-
for pdf in pdf_docs:
|
280 |
-
pdf_reader = PdfReader(pdf)
|
281 |
-
for page in pdf_reader.pages:
|
282 |
-
text += page.extract_text()
|
283 |
-
return text
|
284 |
-
|
285 |
-
def txt2chunks(text):
|
286 |
-
text_splitter = CharacterTextSplitter(separator="\n", chunk_size=1000, chunk_overlap=200, length_function=len)
|
287 |
-
return text_splitter.split_text(text)
|
288 |
-
|
289 |
-
def vector_store(text_chunks):
|
290 |
-
key = os.getenv('OPENAI_API_KEY')
|
291 |
-
embeddings = OpenAIEmbeddings(openai_api_key=key)
|
292 |
-
return FAISS.from_texts(texts=text_chunks, embedding=embeddings)
|
293 |
-
|
294 |
-
def get_chain(vectorstore):
|
295 |
-
llm = ChatOpenAI()
|
296 |
-
memory = ConversationBufferMemory(memory_key='chat_history', return_messages=True)
|
297 |
-
return ConversationalRetrievalChain.from_llm(llm=llm, retriever=vectorstore.as_retriever(), memory=memory)
|
298 |
-
|
299 |
-
def process_user_input(user_question):
|
300 |
-
response = st.session_state.conversation({'question': user_question})
|
301 |
-
st.session_state.chat_history = response['chat_history']
|
302 |
-
for i, message in enumerate(st.session_state.chat_history):
|
303 |
-
template = user_template if i % 2 == 0 else bot_template
|
304 |
-
st.write(template.replace("{{MSG}}", message.content), unsafe_allow_html=True)
|
305 |
-
# Save file output from PDF query results
|
306 |
-
filename = generate_filename(user_question, 'txt')
|
307 |
-
create_file(filename, user_question, message.content)
|
308 |
-
|
309 |
-
#st.sidebar.markdown(get_table_download_link(filename), unsafe_allow_html=True)
|
310 |
-
|
311 |
-
def divide_prompt(prompt, max_length):
|
312 |
-
words = prompt.split()
|
313 |
-
chunks = []
|
314 |
-
current_chunk = []
|
315 |
-
current_length = 0
|
316 |
-
for word in words:
|
317 |
-
if len(word) + current_length <= max_length:
|
318 |
-
current_length += len(word) + 1 # Adding 1 to account for spaces
|
319 |
-
current_chunk.append(word)
|
320 |
-
else:
|
321 |
-
chunks.append(' '.join(current_chunk))
|
322 |
-
current_chunk = [word]
|
323 |
-
current_length = len(word)
|
324 |
-
chunks.append(' '.join(current_chunk)) # Append the final chunk
|
325 |
-
return chunks
|
326 |
-
|
327 |
-
def main():
|
328 |
-
# Sidebar and global
|
329 |
-
openai.api_key = os.getenv('OPENAI_API_KEY')
|
330 |
-
st.set_page_config(page_title="GPT Streamlit Document Reasoner",layout="wide")
|
331 |
-
|
332 |
-
# File type for output, model choice
|
333 |
-
menu = ["txt", "htm", "xlsx", "csv", "md", "py"] #619
|
334 |
-
choice = st.sidebar.selectbox("Output File Type:", menu)
|
335 |
-
model_choice = st.sidebar.radio("Select Model:", ('gpt-3.5-turbo', 'gpt-3.5-turbo-0301'))
|
336 |
-
|
337 |
-
# Audio, transcribe, GPT:
|
338 |
-
filename = save_and_play_audio(audio_recorder)
|
339 |
-
if filename is not None:
|
340 |
-
transcription = transcribe_audio(openai.api_key, filename, "whisper-1")
|
341 |
-
st.sidebar.markdown(get_table_download_link(filename), unsafe_allow_html=True)
|
342 |
-
filename=None # since transcription is finished next time just use the saved transcript
|
343 |
-
|
344 |
-
# prompt interfaces
|
345 |
-
user_prompt = st.text_area("Enter prompts, instructions & questions:", '', height=100)
|
346 |
-
|
347 |
-
# file section interface for prompts against large documents as context
|
348 |
-
collength, colupload = st.columns([2,3]) # adjust the ratio as needed
|
349 |
-
with collength:
|
350 |
-
max_length = st.slider("File section length for large files", min_value=1000, max_value=128000, value=12000, step=1000)
|
351 |
-
with colupload:
|
352 |
-
uploaded_file = st.file_uploader("Add a file for context:", type=["pdf", "xml", "json", "xlsx","csv","html", "htm", "md", "txt"])
|
353 |
-
|
354 |
-
# Document section chat
|
355 |
-
document_sections = deque()
|
356 |
-
document_responses = {}
|
357 |
-
if uploaded_file is not None:
|
358 |
-
file_content = read_file_content(uploaded_file, max_length)
|
359 |
-
document_sections.extend(divide_document(file_content, max_length))
|
360 |
-
if len(document_sections) > 0:
|
361 |
-
if st.button("👁️ View Upload"):
|
362 |
-
st.markdown("**Sections of the uploaded file:**")
|
363 |
-
for i, section in enumerate(list(document_sections)):
|
364 |
-
st.markdown(f"**Section {i+1}**\n{section}")
|
365 |
-
st.markdown("**Chat with the model:**")
|
366 |
-
for i, section in enumerate(list(document_sections)):
|
367 |
-
if i in document_responses:
|
368 |
-
st.markdown(f"**Section {i+1}**\n{document_responses[i]}")
|
369 |
-
else:
|
370 |
-
if st.button(f"Chat about Section {i+1}"):
|
371 |
-
st.write('Reasoning with your inputs...')
|
372 |
-
response = chat_with_model(user_prompt, section, model_choice) # *************************************
|
373 |
-
st.write('Response:')
|
374 |
-
st.write(response)
|
375 |
-
document_responses[i] = response
|
376 |
-
filename = generate_filename(f"{user_prompt}_section_{i+1}", choice)
|
377 |
-
create_file(filename, user_prompt, response)
|
378 |
-
st.sidebar.markdown(get_table_download_link(filename), unsafe_allow_html=True)
|
379 |
-
|
380 |
-
if st.button('💬 Chat'):
|
381 |
-
st.write('Reasoning with your inputs...')
|
382 |
-
|
383 |
-
#response = chat_with_model(user_prompt, ''.join(list(document_sections,)), model_choice) # *************************************
|
384 |
-
|
385 |
-
# Divide the user_prompt into smaller sections
|
386 |
-
user_prompt_sections = divide_prompt(user_prompt, max_length)
|
387 |
-
full_response = ''
|
388 |
-
for prompt_section in user_prompt_sections:
|
389 |
-
# Process each section with the model
|
390 |
-
response = chat_with_model(prompt_section, ''.join(list(document_sections)), model_choice)
|
391 |
-
full_response += response + '\n' # Combine the responses
|
392 |
-
|
393 |
-
#st.write('Response:')
|
394 |
-
#st.write(full_response)
|
395 |
-
|
396 |
-
response = full_response
|
397 |
-
st.write('Response:')
|
398 |
-
st.write(response)
|
399 |
-
|
400 |
-
filename = generate_filename(user_prompt, choice)
|
401 |
-
create_file(filename, user_prompt, response)
|
402 |
-
st.sidebar.markdown(get_table_download_link(filename), unsafe_allow_html=True)
|
403 |
-
|
404 |
-
all_files = glob.glob("*.*")
|
405 |
-
all_files = [file for file in all_files if len(os.path.splitext(file)[0]) >= 20] # exclude files with short names
|
406 |
-
all_files.sort(key=lambda x: (os.path.splitext(x)[1], x), reverse=True) # sort by file type and file name in descending order
|
407 |
-
|
408 |
-
# sidebar of files
|
409 |
-
file_contents=''
|
410 |
-
next_action=''
|
411 |
-
for file in all_files:
|
412 |
-
col1, col2, col3, col4, col5 = st.sidebar.columns([1,6,1,1,1]) # adjust the ratio as needed
|
413 |
-
with col1:
|
414 |
-
if st.button("🌐", key="md_"+file): # md emoji button
|
415 |
-
with open(file, 'r') as f:
|
416 |
-
file_contents = f.read()
|
417 |
-
next_action='md'
|
418 |
-
with col2:
|
419 |
-
st.markdown(get_table_download_link(file), unsafe_allow_html=True)
|
420 |
-
with col3:
|
421 |
-
if st.button("📂", key="open_"+file): # open emoji button
|
422 |
-
with open(file, 'r') as f:
|
423 |
-
file_contents = f.read()
|
424 |
-
next_action='open'
|
425 |
-
with col4:
|
426 |
-
if st.button("🔍", key="read_"+file): # search emoji button
|
427 |
-
with open(file, 'r') as f:
|
428 |
-
file_contents = f.read()
|
429 |
-
next_action='search'
|
430 |
-
with col5:
|
431 |
-
if st.button("🗑", key="delete_"+file):
|
432 |
-
os.remove(file)
|
433 |
-
st.experimental_rerun()
|
434 |
-
|
435 |
-
if len(file_contents) > 0:
|
436 |
-
if next_action=='open':
|
437 |
-
file_content_area = st.text_area("File Contents:", file_contents, height=500)
|
438 |
-
if next_action=='md':
|
439 |
-
st.markdown(file_contents)
|
440 |
-
if next_action=='search':
|
441 |
-
file_content_area = st.text_area("File Contents:", file_contents, height=500)
|
442 |
-
st.write('Reasoning with your inputs...')
|
443 |
-
response = chat_with_model(user_prompt, file_contents, model_choice)
|
444 |
-
filename = generate_filename(file_contents, choice)
|
445 |
-
create_file(filename, file_contents, response)
|
446 |
-
|
447 |
-
st.experimental_rerun()
|
448 |
-
#st.sidebar.markdown(get_table_download_link(filename), unsafe_allow_html=True)
|
449 |
-
|
450 |
-
if __name__ == "__main__":
|
451 |
-
main()
|
452 |
-
|
453 |
-
load_dotenv()
|
454 |
-
st.write(css, unsafe_allow_html=True)
|
455 |
-
|
456 |
-
st.header("Chat with documents :books:")
|
457 |
-
user_question = st.text_input("Ask a question about your documents:")
|
458 |
-
if user_question:
|
459 |
-
process_user_input(user_question)
|
460 |
-
|
461 |
-
with st.sidebar:
|
462 |
-
st.subheader("Your documents")
|
463 |
-
docs = st.file_uploader("import documents", accept_multiple_files=True)
|
464 |
-
with st.spinner("Processing"):
|
465 |
-
raw = pdf2txt(docs)
|
466 |
-
if len(raw) > 0:
|
467 |
-
length = str(len(raw))
|
468 |
-
text_chunks = txt2chunks(raw)
|
469 |
-
vectorstore = vector_store(text_chunks)
|
470 |
-
st.session_state.conversation = get_chain(vectorstore)
|
471 |
-
st.markdown('# AI Search Index of Length:' + length + ' Created.') # add timing
|
472 |
-
filename = generate_filename(raw, 'txt')
|
473 |
-
create_file(filename, raw, '')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|