File size: 10,953 Bytes
14e74e9 8a8619b 14e74e9 8a8619b 14e74e9 8a8619b 14e74e9 22715c0 14e74e9 8a8619b 14e74e9 8a8619b 14e74e9 8a8619b 14e74e9 b516523 14e74e9 8a8619b 14e74e9 8a8619b 14e74e9 8a8619b 14e74e9 8a8619b 02c3a11 14e74e9 b516523 14e74e9 8a8619b 14e74e9 8a8619b 14e74e9 8a8619b 14e74e9 8a8619b 14e74e9 02c3a11 14e74e9 02c3a11 14e74e9 02c3a11 14e74e9 02c3a11 14e74e9 02c3a11 14e74e9 02c3a11 14e74e9 02c3a11 14e74e9 02c3a11 14e74e9 02c3a11 14e74e9 02c3a11 8a8619b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 |
import re
import nltk
import torch
import numpy as np
from collections import Counter
from nltk.tokenize import word_tokenize
import textstat
import json
import requests
import concurrent.futures
import tensorflow as tf
from keras.layers import Layer
from transformers import DebertaV2Tokenizer, TFAutoModel
import streamlit as st
from google import genai
import pandas as pd
torch.classes.__path__ = []
# Download tokenizer data once
nltk.download('punkt', quiet=True)
# === Cleaning Function ===
def clean_response(text: str) -> str:
text = re.sub(r"[*_`#>\-\[\]()]", "", text)
text = re.sub(r"\s+", " ", text)
return text.strip()
# === Model APIs ===
def get_response_from_gemini(prompt: str, key) -> str:
gemini_client = genai.Client(api_key=key)
response = gemini_client.models.generate_content(
model="gemini-2.5-pro-exp-03-25",
contents=prompt,
)
return response.text.strip()
def get_response_from_deepseek(prompt: str, key) -> str:
response = requests.post(
url="https://openrouter.ai/api/v1/chat/completions",
headers={"Authorization": f"Bearer {key}"},
data=json.dumps({
"model": "deepseek/deepseek-r1:free",
"messages": [{"role": "user", "content": prompt}]
})
)
return response.json()["choices"][0]["message"]["content"]
def get_response_from_llamafourscout(prompt: str, key) -> str:
response = requests.post(
url="https://openrouter.ai/api/v1/chat/completions",
headers={"Authorization": f"Bearer {key}"},
data=json.dumps({
"model": "meta-llama/llama-4-scout:free",
"messages": [{"role": "user", "content": prompt}]
})
)
return response.json()["choices"][0]["message"]["content"]
def get_response_from_mistralsmall(prompt: str, key) -> str:
response = requests.post(
url="https://openrouter.ai/api/v1/chat/completions",
headers={"Authorization": f"Bearer {key}"},
data=json.dumps({
"model": "mistralai/mistral-small-3.1-24b-instruct:free",
"messages": [{"role": "user", "content": prompt}]
})
)
return response.json()["choices"][0]["message"]["content"]
# === Model Function Mapping ===
MODEL_MAP = {
"Gemini": get_response_from_gemini,
"DeepSeek": get_response_from_deepseek,
"LLaMA 4 Scout": get_response_from_llamafourscout,
"Mistral Small": get_response_from_mistralsmall,
}
# === Metrics ===
def calculate_entropy(text: str) -> float:
try:
tokens = [token.lower() for token in word_tokenize(text) if token.isalnum()]
if not tokens:
return -999999
freq_dist = Counter(tokens)
total_words = len(tokens)
probabilities = [count / total_words for count in freq_dist.values()]
return -sum(p * np.log2(p) for p in probabilities)
except:
return -999999
def calculate_ttr(text: str) -> float:
try:
tokens = [token.lower() for token in word_tokenize(text) if token.isalnum()]
return len(set(tokens)) / len(tokens) if tokens else -999999
except:
return -999999
def get_fk_score(text: str) -> float:
try:
return textstat.flesch_kincaid_grade(text)
except:
return -999999
def get_dc_score(text: str) -> float:
try:
return textstat.dale_chall_readability_score(text)
except:
return -999999
# === Model Setup ===
tokenizer = DebertaV2Tokenizer.from_pretrained("microsoft/deberta-v3-base")
class DebertaEmbeddingLayer(Layer):
def __init__(self, **kwargs):
super(DebertaEmbeddingLayer, self).__init__(**kwargs)
self.deberta = TFAutoModel.from_pretrained("microsoft/deberta-v3-base")
def call(self, inputs):
input_ids, attention_mask = inputs
outputs = self.deberta(input_ids, attention_mask=tf.cast(attention_mask, dtype=tf.int32))
return outputs.last_hidden_state
def compute_output_shape(self, input_shape):
return (input_shape[0][0], input_shape[0][1], 768)
model = tf.keras.models.load_model("models/hybrid_lstm_model.keras", custom_objects={"DebertaEmbeddingLayer": DebertaEmbeddingLayer})
# === Preprocessing ===
def preprocess_inputs(prompt: str, response_a: str, response_b: str, tokenizer, max_length=512):
combined_text = prompt + " " + response_a + " " + response_b
encoded = tokenizer(
[combined_text],
padding="max_length",
truncation=True,
max_length=max_length,
return_tensors="tf"
)
metrics = np.array([
get_fk_score(response_a),
get_fk_score(response_b),
get_dc_score(response_a),
get_dc_score(response_b),
calculate_ttr(response_a),
calculate_ttr(response_b),
calculate_entropy(response_a),
calculate_entropy(response_b)
]).reshape(1, -1).astype(np.float32)
return encoded["input_ids"], encoded["attention_mask"], metrics
# === Streamlit UI ===
st.set_page_config(page_title="LMSYS Demo", layout="wide")
st.markdown(
"""
<style>
* {
font-family: 'Georgia', serif !important;
}
.stButton>button {
background-color: #C2B280;
color: #3B2F2F;
border-radius: 8px;
border: 1px solid #7C3E2E;
}
.stButton>button:hover {
background-color: #A67B5B;
color: white;
}
.stTextInput>div>div>input {
background-color: #fdf6e3;
color: #3B2F2F;
border-radius: 4px;
}
</style>
""",
unsafe_allow_html=True
)
st.title("Predicting Human Preference : LLM Battleground")
st.write("As part of this demo, we make use of any two of the following SOTA LLMs : [Gemini 2.5 Pro](https://deepmind.google/technologies/gemini/pro/), [DeepSeek R1](https://api-docs.deepseek.com/news/news250120), [Mistral Small 3.1](https://mistral.ai/news/mistral-small-3-1) and [LLaMa 4 Scout](https://ai.meta.com/blog/llama-4-multimodal-intelligence/) and make them compete against each other on a given prompt (to be entered through the sidebar)")
st.write("Using our proposed hybrid model, we predict which response is more suited to be preferred by a human user.")
st.sidebar.title("Ask a Question!")
model_choices = list(MODEL_MAP.keys())
model_a_name = st.sidebar.selectbox("Choose Model A", model_choices, index=0)
model_b_name = st.sidebar.selectbox("Choose Model B", model_choices, index=1)
question = st.sidebar.text_area("Enter your question:", key="prompt_input")
if "generated" not in st.session_state:
st.session_state["generated"] = False
import concurrent.futures
if st.sidebar.button("Generate Responses") and question:
with st.spinner("Generating LLM responses"):
def fetch_model_response(model_name):
api_key = st.secrets["GEMINI_API_KEY"] if model_name == "Gemini" else st.secrets["OPENROUTER_API_KEY"]
return MODEL_MAP[model_name](question, api_key)
with concurrent.futures.ThreadPoolExecutor() as executor:
future_a = executor.submit(fetch_model_response, model_a_name)
future_b = executor.submit(fetch_model_response, model_b_name)
raw_a = future_a.result()
raw_b = future_b.result()
st.session_state.update({
"response_a_raw": raw_a,
"response_b_raw": raw_b,
"response_a_clean": clean_response(raw_a),
"response_b_clean": clean_response(raw_b),
"generated": True,
"prediction": None,
"model_a_name": model_a_name,
"model_b_name": model_b_name
})
if st.session_state["generated"]:
tab1, tab2, tab3 = st.tabs(["Predictions","Model Architecture", "Metric Curves"])
with tab1:
st.subheader("Model Responses")
col1, col2 = st.columns(2)
with col1:
st.markdown(f"#### {st.session_state['model_a_name']}")
st.markdown(st.session_state["response_a_raw"])
with col2:
st.markdown(f"#### {st.session_state['model_b_name']}")
st.markdown(st.session_state["response_b_raw"])
if st.button("Predict Winner"):
with st.spinner("Running model..."):
input_ids, attention_mask, num_features = preprocess_inputs(
question,
st.session_state["response_a_clean"],
st.session_state["response_b_clean"],
tokenizer
)
predictions = model.predict([input_ids, attention_mask, num_features], verbose=0)
predicted_class = np.argmax(predictions, axis=-1)[0]
label_map = {0: f"{st.session_state['model_a_name']}!", 1: f"{st.session_state['model_b_name']}!", 2: "Tie!"}
st.session_state["prediction"] = label_map[predicted_class]
if st.session_state.get("prediction"):
st.success(f"🤖 Model Prediction: {st.session_state['prediction']}")
with tab2:
st.subheader("Model Architecture")
st.image("images/arch.png", caption="Dual-LSTM + Attention + Numerical Features")
with tab3:
st.subheader("Training vs Validation Metrics")
st.markdown("### RNN")
col1, col2 = st.columns(2)
with col1:
st.image("images/plots/rnn_baseline_acc.png", caption="Accuracy - RNN", use_container_width=True)
with col2:
st.image("images/plots/rnn_baseline_loss.png", caption="Log Loss - RNN", use_container_width=True)
st.markdown("### LSTM")
col1, col2 = st.columns(2)
with col1:
st.image("images/plots/lstm_baseline_acc.png", caption="Accuracy - LSTM", use_container_width=True)
with col2:
st.image("images/plots/lstm_baseline_loss.png", caption="Log Loss - LSTM", use_container_width=True)
st.markdown("### Bi-LSTM")
col1, col2 = st.columns(2)
with col1:
st.image("images/plots/bilstm_baseline_acc.png", caption="Accuracy - Bi-LSTM", use_container_width=True)
with col2:
st.image("images/plots/bilstm_baseline_loss.png", caption="Log Loss - Bi-LSTM", use_container_width=True)
st.markdown("### Hybrid (Dual-LSTM)")
col1, col2 = st.columns(2)
with col1:
st.image("images/plots/duallstm_hybrid_acc.png", caption="Accuracy - Hybrid (Dual-LSTM)", use_container_width=True)
with col2:
st.image("images/plots/duallstm_hybrid_loss.png", caption="Log Loss - Hybrid (Dual-LSTM)", use_container_width=True)
st.markdown("### Hybrid (Bi-LSTM)")
col1, col2 = st.columns(2)
with col1:
st.image("images/plots/bilstm_hybrid_acc.png", caption="Accuracy - Hybrid (Bi-LSTM)", use_container_width=True)
with col2:
st.image("images/plots/bilstm_hybrid_loss.png", caption="Log Loss - Hybrid (Bi-LSTM)", use_container_width=True)
|