Upload 18 files
Browse files- .GITIGNORE +2 -0
- .env +2 -0
- .gitattributes +2 -0
- .streamlit/config.toml +10 -0
- .streamlit/secrets.toml +2 -0
- app.py +246 -0
- images/arch.png +3 -0
- images/plots/bilstm_baseline_acc.png +0 -0
- images/plots/bilstm_baseline_loss.png +0 -0
- images/plots/bilstm_hybrid_acc.png +0 -0
- images/plots/bilstm_hybrid_loss.png +0 -0
- images/plots/duallstm_hybrid_acc.png +0 -0
- images/plots/duallstm_hybrid_loss.png +0 -0
- images/plots/lstm_baseline_acc.png +0 -0
- images/plots/lstm_baseline_loss.png +0 -0
- images/plots/rnn_baseline_acc.png +0 -0
- images/plots/rnn_baseline_loss.png +0 -0
- models/hybrid_lstm_model.keras +3 -0
- requirements.txt +11 -0
.GITIGNORE
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
.env
|
2 |
+
.streamlit
|
.env
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
OPENROUTER_API_KEY = "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"
|
2 |
+
GEMINI_API_KEY = "AIzaSyCd4ZeGpQkiI_eA0iKWCTmFDMCeQVihos4"
|
.gitattributes
CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
images/arch.png filter=lfs diff=lfs merge=lfs -text
|
37 |
+
models/hybrid_lstm_model.keras filter=lfs diff=lfs merge=lfs -text
|
.streamlit/config.toml
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[theme]
|
2 |
+
base = "light"
|
3 |
+
primaryColor = "#7C3E2E"
|
4 |
+
backgroundColor = "#FAF3E0"
|
5 |
+
secondaryBackgroundColor = "#F5E1C8"
|
6 |
+
textColor = "#3B2F2F"
|
7 |
+
font = "serif"
|
8 |
+
|
9 |
+
[server]
|
10 |
+
runOnSave = true
|
.streamlit/secrets.toml
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
OPENROUTER_API_KEY = "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"
|
2 |
+
GEMINI_API_KEY = "AIzaSyCd4ZeGpQkiI_eA0iKWCTmFDMCeQVihos4"
|
app.py
ADDED
@@ -0,0 +1,246 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
import nltk
|
3 |
+
import torch
|
4 |
+
import numpy as np
|
5 |
+
from collections import Counter
|
6 |
+
from nltk.tokenize import word_tokenize
|
7 |
+
import textstat
|
8 |
+
import json
|
9 |
+
import requests
|
10 |
+
import tensorflow as tf
|
11 |
+
from keras.layers import Layer
|
12 |
+
from transformers import DebertaV2Tokenizer, TFAutoModel
|
13 |
+
import streamlit as st
|
14 |
+
from google import genai
|
15 |
+
torch.classes.__path__ = []
|
16 |
+
# Download tokenizer data once
|
17 |
+
nltk.download('punkt', quiet=True)
|
18 |
+
|
19 |
+
# === Cleaning Function ===
|
20 |
+
def clean_response(text: str) -> str:
|
21 |
+
# Simple markdown cleaner
|
22 |
+
text = re.sub(r"[*_`#>\-\[\]()]", "", text)
|
23 |
+
text = re.sub(r"\s+", " ", text)
|
24 |
+
return text.strip()
|
25 |
+
|
26 |
+
# === Gemini API ===
|
27 |
+
|
28 |
+
|
29 |
+
def get_response_from_gemini(prompt: str, key) -> str:
|
30 |
+
gemini_client = genai.Client(api_key=key)
|
31 |
+
response = gemini_client.models.generate_content(
|
32 |
+
model="gemini-2.5-pro-exp-03-25",
|
33 |
+
contents=prompt,
|
34 |
+
)
|
35 |
+
return response.text.strip()
|
36 |
+
|
37 |
+
# === DeepSeek API ===
|
38 |
+
def get_response_from_deepseek(prompt: str, key) -> str:
|
39 |
+
response = requests.post(
|
40 |
+
url="https://openrouter.ai/api/v1/chat/completions",
|
41 |
+
headers={"Authorization": f"Bearer {key}"},
|
42 |
+
data=json.dumps({
|
43 |
+
"model": "deepseek/deepseek-r1:free",
|
44 |
+
"messages": [{"role": "user", "content": prompt}]
|
45 |
+
})
|
46 |
+
)
|
47 |
+
return response.json()["choices"][0]["message"]["content"]
|
48 |
+
|
49 |
+
# === Metrics ===
|
50 |
+
def calculate_entropy(text: str) -> float:
|
51 |
+
try:
|
52 |
+
tokens = [token.lower() for token in word_tokenize(text) if token.isalnum()]
|
53 |
+
if not tokens:
|
54 |
+
return -999999
|
55 |
+
freq_dist = Counter(tokens)
|
56 |
+
total_words = len(tokens)
|
57 |
+
probabilities = [count / total_words for count in freq_dist.values()]
|
58 |
+
return -sum(p * np.log2(p) for p in probabilities)
|
59 |
+
except:
|
60 |
+
return -999999
|
61 |
+
|
62 |
+
def calculate_ttr(text: str) -> float:
|
63 |
+
try:
|
64 |
+
tokens = [token.lower() for token in word_tokenize(text) if token.isalnum()]
|
65 |
+
return len(set(tokens)) / len(tokens) if tokens else -999999
|
66 |
+
except:
|
67 |
+
return -999999
|
68 |
+
|
69 |
+
def get_fk_score(text: str) -> float:
|
70 |
+
try:
|
71 |
+
return textstat.flesch_kincaid_grade(text)
|
72 |
+
except:
|
73 |
+
return -999999
|
74 |
+
|
75 |
+
def get_dc_score(text: str) -> float:
|
76 |
+
try:
|
77 |
+
return textstat.dale_chall_readability_score(text)
|
78 |
+
except:
|
79 |
+
return -999999
|
80 |
+
|
81 |
+
# === Model Setup ===
|
82 |
+
tokenizer = DebertaV2Tokenizer.from_pretrained("microsoft/deberta-v3-base")
|
83 |
+
|
84 |
+
class DebertaEmbeddingLayer(Layer):
|
85 |
+
def __init__(self, **kwargs):
|
86 |
+
super(DebertaEmbeddingLayer, self).__init__(**kwargs)
|
87 |
+
self.deberta = TFAutoModel.from_pretrained("microsoft/deberta-v3-base")
|
88 |
+
|
89 |
+
def call(self, inputs):
|
90 |
+
input_ids, attention_mask = inputs
|
91 |
+
outputs = self.deberta(input_ids, attention_mask=tf.cast(attention_mask, dtype=tf.int32))
|
92 |
+
return outputs.last_hidden_state
|
93 |
+
|
94 |
+
def compute_output_shape(self, input_shape):
|
95 |
+
return (input_shape[0][0], input_shape[0][1], 768)
|
96 |
+
|
97 |
+
model = tf.keras.models.load_model("models/hybrid_lstm_model.keras", custom_objects={"DebertaEmbeddingLayer": DebertaEmbeddingLayer})
|
98 |
+
|
99 |
+
# === Preprocessing ===
|
100 |
+
def preprocess_inputs(prompt: str, response_a: str, response_b: str, tokenizer, max_length=512):
|
101 |
+
combined_text = prompt + " " + response_a + " " + response_b
|
102 |
+
encoded = tokenizer(
|
103 |
+
[combined_text],
|
104 |
+
padding="max_length",
|
105 |
+
truncation=True,
|
106 |
+
max_length=max_length,
|
107 |
+
return_tensors="tf"
|
108 |
+
)
|
109 |
+
metrics = np.array([
|
110 |
+
get_fk_score(response_a),
|
111 |
+
get_fk_score(response_b),
|
112 |
+
get_dc_score(response_a),
|
113 |
+
get_dc_score(response_b),
|
114 |
+
calculate_ttr(response_a),
|
115 |
+
calculate_ttr(response_b),
|
116 |
+
calculate_entropy(response_a),
|
117 |
+
calculate_entropy(response_b)
|
118 |
+
]).reshape(1, -1).astype(np.float32)
|
119 |
+
return encoded["input_ids"], encoded["attention_mask"], metrics
|
120 |
+
|
121 |
+
# === Streamlit UI ===
|
122 |
+
st.set_page_config(page_title="LMSYS Demo", layout="wide")
|
123 |
+
|
124 |
+
# Optional styling (vintage theme)
|
125 |
+
st.markdown(
|
126 |
+
"""
|
127 |
+
<style>
|
128 |
+
* {
|
129 |
+
font-family: 'Georgia', serif !important;
|
130 |
+
}
|
131 |
+
.stButton>button {
|
132 |
+
background-color: #C2B280;
|
133 |
+
color: #3B2F2F;
|
134 |
+
border-radius: 8px;
|
135 |
+
border: 1px solid #7C3E2E;
|
136 |
+
}
|
137 |
+
.stButton>button:hover {
|
138 |
+
background-color: #A67B5B;
|
139 |
+
color: white;
|
140 |
+
}
|
141 |
+
.stTextInput>div>div>input {
|
142 |
+
background-color: #fdf6e3;
|
143 |
+
color: #3B2F2F;
|
144 |
+
border-radius: 4px;
|
145 |
+
}
|
146 |
+
</style>
|
147 |
+
""",
|
148 |
+
unsafe_allow_html=True
|
149 |
+
)
|
150 |
+
|
151 |
+
st.title("Predicting Human Preference : Gemini vs DeepSeek")
|
152 |
+
st.write("As part of this demo, we make use of two SOTA LLMs : [Gemini 2.5 Pro](https://deepmind.google/technologies/gemini/pro/) and [DeepSeek R1](https://api-docs.deepseek.com/news/news250120) and make them compete against each other on a given prompt (to be entered through the sidebar)")
|
153 |
+
st.write("Using our proposed hybrid model, we predict which response is more suited to be preferred by a human user.")
|
154 |
+
st.sidebar.title("Ask a Question!")
|
155 |
+
question = st.sidebar.text_area("Enter your question:", key="prompt_input")
|
156 |
+
|
157 |
+
# Init session state
|
158 |
+
if "generated" not in st.session_state:
|
159 |
+
st.session_state["generated"] = False
|
160 |
+
|
161 |
+
# Generate responses
|
162 |
+
if st.sidebar.button("Generate Responses") and question:
|
163 |
+
with st.spinner("Generating LLM responses..."):
|
164 |
+
raw_a = get_response_from_gemini(question, st.secrets["GEMINI_API_KEY"])
|
165 |
+
raw_b = get_response_from_deepseek(question, st.secrets["OPENROUTER_API_KEY"])
|
166 |
+
|
167 |
+
st.session_state["response_a_raw"] = raw_a
|
168 |
+
st.session_state["response_b_raw"] = raw_b
|
169 |
+
st.session_state["response_a_clean"] = clean_response(raw_a)
|
170 |
+
st.session_state["response_b_clean"] = clean_response(raw_b)
|
171 |
+
|
172 |
+
st.session_state["generated"] = True
|
173 |
+
st.session_state["prediction"] = None
|
174 |
+
|
175 |
+
# Display and interact
|
176 |
+
if st.session_state["generated"]:
|
177 |
+
tab1, tab2, tab3 = st.tabs(["Predictions","Model Architecture", "📈 Metric Curves"])
|
178 |
+
|
179 |
+
with tab1:
|
180 |
+
st.subheader("Model Responses")
|
181 |
+
col1, col2 = st.columns(2)
|
182 |
+
with col1:
|
183 |
+
st.markdown("#### Gemini")
|
184 |
+
st.markdown(st.session_state["response_a_raw"])
|
185 |
+
with col2:
|
186 |
+
st.markdown("#### DeepSeek")
|
187 |
+
st.markdown(st.session_state["response_b_raw"])
|
188 |
+
|
189 |
+
|
190 |
+
if st.button("Predict Winner"):
|
191 |
+
with st.spinner("Running model..."):
|
192 |
+
input_ids, attention_mask, num_features = preprocess_inputs(
|
193 |
+
question,
|
194 |
+
st.session_state["response_a_clean"],
|
195 |
+
st.session_state["response_b_clean"],
|
196 |
+
tokenizer
|
197 |
+
)
|
198 |
+
predictions = model.predict([input_ids, attention_mask, num_features], verbose=0)
|
199 |
+
predicted_class = np.argmax(predictions, axis=-1)[0]
|
200 |
+
label_map = {0: "Gemini!", 1: "DeepSeek!", 2: "Tie!"}
|
201 |
+
st.session_state["prediction"] = label_map[predicted_class]
|
202 |
+
|
203 |
+
if st.session_state.get("prediction"):
|
204 |
+
st.success(f"🤖 Model Prediction: {st.session_state['prediction']}")
|
205 |
+
|
206 |
+
with tab2:
|
207 |
+
st.subheader("Model Architecture")
|
208 |
+
st.image("images/arch.png", caption="Dual-LSTM + Attention + Numerical Features")
|
209 |
+
|
210 |
+
with tab3:
|
211 |
+
st.subheader("Training vs Validation Metrics")
|
212 |
+
|
213 |
+
st.markdown("### RNN")
|
214 |
+
col1, col2 = st.columns(2)
|
215 |
+
with col1:
|
216 |
+
st.image("images/plots/rnn_baseline_acc.png", caption="Accuracy - RNN", use_column_width=True)
|
217 |
+
with col2:
|
218 |
+
st.image("images/plots/rnn_baseline_loss.png", caption="Log Loss - RNN", use_column_width=True)
|
219 |
+
|
220 |
+
st.markdown("### LSTM")
|
221 |
+
col1, col2 = st.columns(2)
|
222 |
+
with col1:
|
223 |
+
st.image("images/plots/lstm_baseline_acc.png", caption="Accuracy - LSTM", use_column_width=True)
|
224 |
+
with col2:
|
225 |
+
st.image("images/plots/lstm_baseline_loss.png", caption="Log Loss - LSTM", use_column_width=True)
|
226 |
+
|
227 |
+
st.markdown("### Bi-LSTM")
|
228 |
+
col1, col2 = st.columns(2)
|
229 |
+
with col1:
|
230 |
+
st.image("images/plots/bilstm_baseline_acc.png", caption="Accuracy - Bi-LSTM", use_column_width=True)
|
231 |
+
with col2:
|
232 |
+
st.image("images/plots/bilstm_baseline_loss.png", caption="Log Loss - Bi-LSTM", use_column_width=True)
|
233 |
+
|
234 |
+
st.markdown("### Hybrid (Dual-LSTM)")
|
235 |
+
col1, col2 = st.columns(2)
|
236 |
+
with col1:
|
237 |
+
st.image("images/plots/duallstm_hybrid_acc.png", caption="Accuracy - Hybrid (Dual-LSTM)", use_column_width=True)
|
238 |
+
with col2:
|
239 |
+
st.image("images/plots/duallstm_hybrid_loss.png", caption="Log Loss - Hybrid (Dual-LSTM)", use_column_width=True)
|
240 |
+
|
241 |
+
st.markdown("### Hybrid (Bi-LSTM)")
|
242 |
+
col1, col2 = st.columns(2)
|
243 |
+
with col1:
|
244 |
+
st.image("images/plots/bilstm_hybrid_acc.png", caption="Accuracy - Hybrid (Bi-LSTM)", use_column_width=True)
|
245 |
+
with col2:
|
246 |
+
st.image("images/plots/bilstm_hybrid_loss.png", caption="Log Loss - Hybrid (Bi-LSTM)", use_column_width=True)
|
images/arch.png
ADDED
![]() |
Git LFS Details
|
images/plots/bilstm_baseline_acc.png
ADDED
![]() |
images/plots/bilstm_baseline_loss.png
ADDED
![]() |
images/plots/bilstm_hybrid_acc.png
ADDED
![]() |
images/plots/bilstm_hybrid_loss.png
ADDED
![]() |
images/plots/duallstm_hybrid_acc.png
ADDED
![]() |
images/plots/duallstm_hybrid_loss.png
ADDED
![]() |
images/plots/lstm_baseline_acc.png
ADDED
![]() |
images/plots/lstm_baseline_loss.png
ADDED
![]() |
images/plots/rnn_baseline_acc.png
ADDED
![]() |
images/plots/rnn_baseline_loss.png
ADDED
![]() |
models/hybrid_lstm_model.keras
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1fcf934f1f7d7628373fd5b391b017f3bdce61d77cb35c0528cb7df7a073b579
|
3 |
+
size 6238662
|
requirements.txt
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
tensorflow
|
2 |
+
torch
|
3 |
+
sentencepiece
|
4 |
+
tf-keras
|
5 |
+
transformers
|
6 |
+
google-genai
|
7 |
+
nltk
|
8 |
+
textstat
|
9 |
+
streamlit
|
10 |
+
pandas
|
11 |
+
numpy
|