import gradio as gr from transformers import AutoModel, AutoTokenizer import torch # Load the model and tokenizer from Hugging Face Hub model = AutoModel.from_pretrained("comethrusws/finlytic-compliance") tokenizer = AutoTokenizer.from_pretrained("comethrusws/finlytic-compliance") # Define a function to handle inference def predict(input_data): inputs = tokenizer(input_data, return_tensors="pt") outputs = model(**inputs) # Assuming the model returns logits (modify this depending on your model's architecture) prediction = torch.argmax(outputs.logits, dim=-1).item() return prediction # Create a Gradio interface interface = gr.Interface( fn=predict, inputs=gr.inputs.Textbox(label="Input Data"), outputs=gr.outputs.Textbox(label="Prediction"), title="Fintlytic Compliance Model", description="Predict using the Finlytic compliance model", ) # Launch the Gradio app if __name__ == "__main__": interface.launch()