Spaces:
Running
Running
File size: 9,349 Bytes
5d9796e 1f6e4a8 5d9796e 1f6e4a8 5d9796e 8cfcc1c 5d9796e 1f6e4a8 5d9796e 1f6e4a8 5d9796e 1f6e4a8 5d9796e 8cfcc1c 1f6e4a8 5d9796e 8cfcc1c 5d9796e 1f6e4a8 5d9796e 90ad424 5d9796e 1f6e4a8 5d9796e 1f6e4a8 5d9796e 1f6e4a8 8cfcc1c 5d9796e 1f6e4a8 5d9796e 1f6e4a8 5d9796e 1f6e4a8 5d9796e 8cfcc1c 1f6e4a8 8cfcc1c 1f6e4a8 8cfcc1c 1f6e4a8 8cfcc1c 1f6e4a8 8cfcc1c 1f6e4a8 8cfcc1c 1f6e4a8 8cfcc1c 1f6e4a8 8cfcc1c 1f6e4a8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 |
import gradio as gr
import torch
from viscy.light.engine import VSUNet
from huggingface_hub import hf_hub_download
from numpy.typing import ArrayLike
import numpy as np
from skimage import exposure
from skimage.transform import resize
from skimage import img_as_float
from skimage.util import invert
import cmap
class VSGradio:
def __init__(self, model_config, model_ckpt_path):
self.model_config = model_config
self.model_ckpt_path = model_ckpt_path
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.model = None
self.load_model()
def load_model(self):
# Load the model checkpoint and move it to the correct device (GPU or CPU)
self.model = VSUNet.load_from_checkpoint(
self.model_ckpt_path,
architecture="UNeXt2_2D",
model_config=self.model_config,
)
self.model.to(self.device) # Move the model to the correct device (GPU/CPU)
self.model.eval()
def normalize_fov(self, input: ArrayLike):
"Normalizing the fov with zero mean and unit variance"
mean = np.mean(input)
std = np.std(input)
return (input - mean) / std
def preprocess_image_standard(self, input: ArrayLike):
# Perform standard preprocessing here
input = exposure.equalize_adapthist(input)
return input
def downscale_image(self, inp: ArrayLike, scale_factor: float):
"""Downscales the image by the given scaling factor"""
height, width = inp.shape
new_height = int(height * scale_factor)
new_width = int(width * scale_factor)
return resize(inp, (new_height, new_width), anti_aliasing=True)
def predict(self, inp, cell_diameter: float):
# Normalize the input and convert to tensor
inp = self.normalize_fov(inp)
original_shape = inp.shape
# Resize the input image to the expected cell diameter
inp = apply_rescale_image(inp, cell_diameter, expected_cell_diameter=30)
# Convert the input to a tensor
inp = torch.from_numpy(np.array(inp).astype(np.float32))
# Prepare the input dictionary and move input to the correct device (GPU or CPU)
test_dict = dict(
index=None,
source=inp.unsqueeze(0).unsqueeze(0).unsqueeze(0).to(self.device),
)
# Run model inference
with torch.inference_mode():
self.model.on_predict_start() # Necessary preprocessing for the model
pred = (
self.model.predict_step(test_dict, 0, 0).cpu().numpy()
) # Move output back to CPU for post-processing
# Post-process the model output and rescale intensity
nuc_pred = pred[0, 0, 0]
mem_pred = pred[0, 1, 0]
# Resize predictions back to the original image size
nuc_pred = resize(nuc_pred, original_shape, anti_aliasing=True)
mem_pred = resize(mem_pred, original_shape, anti_aliasing=True)
# Define colormaps
green_colormap = cmap.Colormap("green") # Nucleus: black to green
magenta_colormap = cmap.Colormap("magenta")
# Apply the colormap to the predictions
nuc_rgb = apply_colormap(nuc_pred, green_colormap)
mem_rgb = apply_colormap(mem_pred, magenta_colormap)
return nuc_rgb, mem_rgb
def apply_colormap(prediction, colormap: cmap.Colormap):
"""Apply a colormap to a single-channel prediction image."""
# Ensure the prediction is within the valid range [0, 1]
prediction = exposure.rescale_intensity(prediction, out_range=(0, 1))
# Apply the colormap to get an RGB image
rgb_image = colormap(prediction)
# Convert the output from [0, 1] to [0, 255] for display
rgb_image_uint8 = (rgb_image * 255).astype(np.uint8)
return rgb_image_uint8
def apply_image_adjustments(image, invert_image: bool, gamma_factor: float):
"""Applies all the image adjustments (invert, contrast, gamma) in sequence"""
# Apply invert
if invert_image:
image = invert(image, signed_float=False)
# Apply gamma adjustment
image = exposure.adjust_gamma(image, gamma_factor)
return exposure.rescale_intensity(image, out_range=(0, 255)).astype(np.uint8)
def apply_rescale_image(
image, cell_diameter: float, expected_cell_diameter: float = 30
):
# Assume the model was trained with cells ~30 microns in diameter
# Resize the input image according to the scaling factor
scale_factor = expected_cell_diameter / float(cell_diameter)
image = resize(
image,
(int(image.shape[0] * scale_factor), int(image.shape[1] * scale_factor)),
anti_aliasing=True,
)
return image
# Load the custom CSS from the file
def load_css(file_path):
with open(file_path, "r") as file:
return file.read()
if __name__ == "__main__":
# Download the model checkpoint from Hugging Face
model_ckpt_path = hf_hub_download(
repo_id="compmicro-czb/VSCyto2D", filename="epoch=399-step=23200.ckpt"
)
# Model configuration
model_config = {
"in_channels": 1,
"out_channels": 2,
"encoder_blocks": [3, 3, 9, 3],
"dims": [96, 192, 384, 768],
"decoder_conv_blocks": 2,
"stem_kernel_size": [1, 2, 2],
"in_stack_depth": 1,
"pretraining": False,
}
vsgradio = VSGradio(model_config, model_ckpt_path)
# Initialize the Gradio app using Blocks
with gr.Blocks(css=load_css("style.css")) as demo:
# Title and description
gr.HTML(
"<div class='title-block'>Image Translation (Virtual Staining) of cellular landmark organelles</div>"
)
gr.HTML(
"""
<div class='description-block'>
<p><b>Model:</b> VSCyto2D</p>
<p><b>Input:</b> label-free image (e.g., QPI or phase contrast).</p>
<p><b>Output:</b> Virtual staining of nucleus and membrane.</p>
<p><b>Note:</b> The model works well with QPI, and sometimes generalizes to phase contrast and DIC. We continue to diagnose and improve generalization<p>
<p>Check out our preprint: <a href='https://www.biorxiv.org/content/10.1101/2024.05.31.596901' target='_blank'><i>Liu et al., Robust virtual staining of landmark organelles</i></a></p>
<p> For training, inference and evaluation of the model refer to the <a href='https://github.com/mehta-lab/VisCy/tree/main/examples/virtual_staining/dlmbl_exercise' target='_blank'>GitHub repository</a>.</p>
</div>
"""
)
# Layout for input and output images
with gr.Row():
input_image = gr.Image(type="numpy", image_mode="L", label="Upload Image")
adjusted_image = gr.Image(
type="numpy", image_mode="L", label="Adjusted Image (Preview)"
)
with gr.Column():
output_nucleus = gr.Image(
type="numpy", image_mode="RGB", label="VS Nucleus"
)
output_membrane = gr.Image(
type="numpy", image_mode="RGB", label="VS Membrane"
)
# Checkbox for applying invert
preprocess_invert = gr.Checkbox(label="Apply Invert", value=False)
# Slider for gamma adjustment
gamma_factor = gr.Slider(
label="Adjust Gamma", minimum=0.1, maximum=5.0, value=1.0, step=0.1
)
# Input field for the cell diameter in microns
cell_diameter = gr.Textbox(
label="Cell Diameter [um]",
value="30.0",
placeholder="Enter cell diameter in microns",
)
# Update the adjusted image based on all the transformations
input_image.change(
fn=apply_image_adjustments,
inputs=[input_image, preprocess_invert, gamma_factor],
outputs=adjusted_image,
)
gamma_factor.change(
fn=apply_image_adjustments,
inputs=[input_image, preprocess_invert, gamma_factor],
outputs=adjusted_image,
)
preprocess_invert.change(
fn=apply_image_adjustments,
inputs=[input_image, preprocess_invert, gamma_factor],
outputs=adjusted_image,
)
# Button to trigger prediction
submit_button = gr.Button("Submit")
# Define what happens when the button is clicked (send adjusted image to predict)
submit_button.click(
vsgradio.predict,
inputs=[adjusted_image, cell_diameter],
outputs=[output_nucleus, output_membrane],
)
# Example images and article
gr.Examples(
examples=[
"examples/a549.png",
"examples/hek.png",
"examples/ctc_HeLa.png",
"examples/livecell_A172.png",
],
inputs=input_image,
)
# Article or footer information
gr.HTML(
"""
<div class='article-block'>
<p> Model trained primarily on HEK293T, BJ5, and A549 cells. For best results, use quantitative phase images (QPI)</p>
</div>
"""
)
# Launch the Gradio app
demo.launch()
|